Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

Overview

Deep Learning with PyTorch Step-by-Step

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Each notebook contains all the code shown in its corresponding chapter, and you should be able to run its cells in sequence to get the same outputs as shown in the book. I strongly believe that being able to reproduce the results brings confidence to the reader.

There are three options for you to run the Jupyter notebooks:

Google Colab

You can easily load the notebooks directly from GitHub using Colab and run them using a GPU provided by Google. You need to be logged in a Google Account of your own.

You can go through the chapters already using the links below:

Part I - Fundamentals

Part II - Computer Vision

Part III - Sequences

Part IV - Natural Language Processing

Binder

You can also load the notebooks directly from GitHub using Binder, but the process is slightly different. It will create an environment on the cloud and allow you to access Jupyter's Home Page in your browser, listing all available notebooks, just like in your own computer.

If you make changes to the notebooks, make sure to download them, since Binder does not keep the changes once you close it.

You can start your environment on the cloud right now using the button below:

Binder

Local Installation

This option will give you more flexibility, but it will require more effort to set up. I encourage you to try setting up your own environment. It may seem daunting at first, but you can surely accomplish it following seven easy steps:

1 - Anaconda

If you don’t have Anaconda’s Individual Edition installed yet, that would be a good time to do it - it is a very handy way to start - since it contains most of the Python libraries a data scientist will ever need to develop and train models.

Please follow the installation instructions for your OS:

Make sure you choose Python 3.X version since Python 2 was discontinued in January 2020.

2 - Conda (Virtual) Environments

Virtual environments are a convenient way to isolate Python installations associated with different projects.

First, you need to choose a name for your environment :-) Let’s call ours pytorchbook (or anything else you find easier to remember). Then, you need to open a terminal (in Ubuntu) or Anaconda Prompt (in Windows or macOS) and type the following command:

conda create -n pytorchbook anaconda

The command above creates a conda environment named pytorchbook and includes all anaconda packages in it (time to get a coffee, it will take a while...). If you want to learn more about creating and using conda environments, please check Anaconda’s Managing Environments user guide.

Did it finish creating the environment? Good! It is time to activate it, meaning, making that Python installation the one to be used now. In the same terminal (or Anaconda Prompt), just type:

conda activate pytorchbook

Your prompt should look like this (if you’re using Linux)...

(pytorchbook)$

or like this (if you’re using Windows):

(pytorchbook)C:\>

Done! You are using a brand new conda environment now. You’ll need to activate it every time you open a new terminal or, if you’re a Windows or macOS user, you can open the corresponding Anaconda Prompt (it will show up as Anaconda Prompt (pytorchbook), in our case), which will have it activated from start.

IMPORTANT: From now on, I am assuming you’ll activate the pytorchbook environment every time you open a terminal / Anaconda Prompt. Further installation steps must be executed inside the environment.

3 - PyTorch

It is time to install the star of the show :-) We can go straight to the Start Locally section of its website and it will automatically select the options that best suit your local environment and it will show you the command to run.

Your choices should look like:

  • PyTorch Build: "Stable"
  • Your OS: your operating system
  • Package: "Conda"
  • Language: "Python"
  • CUDA: "None" if you don't have a GPU, or the latest version (e.g. "10.1"), if you have a GPU.

The installation command will be shown right below your choices, so you can copy it. If you have a Windows computer and no GPU, you'd have to run the following command in your Anaconda Prompt (pytorchbook):

(pytorchbook) C:\> conda install pytorch torchvision cpuonly -c pytorch

4 - TensorBoard

TensorBoard is a powerful tool and we can use it even if we are developing models in PyTorch. Luckily, you don’t need to install the whole TensorFlow to get it, you can easily install TensorBoard alone using conda. You just need to run this command in your terminal or Anaconda Prompt (again, after activating the environment):

(pytorchbook)C:\> conda install -c conda-forge tensorboard

5 - GraphViz and TorchViz (optional)

This step is optional, mostly because the installation of GraphViz can be challenging sometimes (especially on Windows). If, for any reason, you do not succeed in installing it correctly, or if you decide to skip this installation step, you will still be able to execute the code in this book (except for a couple of cells that generate images of a model’s structure in the Dynamic Computation Graph section of Chapter 1).

We need to install GraphViz to be able to use TorchViz, a neat package that allows us to visualize a model’s structure. Please check the installation instructions for your OS.

If you are using Windows, please use the installer at GraphViz's Windows Package. You also need to add GraphViz to the PATH (environment variable) in Windows. Most likely, you can find GraphViz executable file at C:\ProgramFiles(x86)\Graphviz2.38\bin. Once you found it, you need to set or change the PATH accordingly, adding GraphViz's location to it. For more details on how to do that, please refer to How to Add to Windows PATH Environment Variable.

For additional information, you can also check the How to Install Graphviz Software guide.

If you installed GraphViz successfully, you can install the torchviz package. This package is not part of Anaconda Distribution Repository and is only available at PyPI , the Python Package Index, so we need to pip install it.

Once again, open a terminal or Anaconda Prompt and run this command (just once more: after activating the environment):

(pytorchbook)C:\> pip install torchviz

6 - Git

It is way beyond the scope of this guide to introduce you to version control and its most popular tool: git. If you are familiar with it already, great, you can skip this section altogether!

Otherwise, I’d recommend you to learn more about it, it will definitely be useful for you later down the line. In the meantime, I will show you the bare minimum, so you can use git to clone this repository containing all code used in this book - so you have your own, local copy of it and can modify and experiment with it as you please.

First, you need to install it. So, head to its downloads page and follow instructions for your OS. Once installation is complete, please open a new terminal or Anaconda Prompt (it's OK to close the previous one). In the new terminal or Anaconda Prompt, you should be able to run git commands. To clone this repository, you only need to run:

(pytorchbook)C:\> git clone https://github.com/dvgodoy/PyTorchStepByStep.git

The command above will create a PyTorchStepByStep folder which contains a local copy of everything available on this GitHub’s repository.

7 - Jupyter

After cloning the repository, navigate to the PyTorchStepByStep and, once inside it, you only need to start Jupyter on your terminal or Anaconda Prompt:

(pytorchbook)C:\> jupyter notebook

This will open your browser up and you will see Jupyter's Home Page containing this repository's notebooks and code.

Congratulations! You are ready to go through the chapters' notebooks!

Owner
Daniel Voigt Godoy
Data scientist, developer, teacher and writer. Author of "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide".
Daniel Voigt Godoy
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022