DrNAS: Dirichlet Neural Architecture Search

Related tags

Deep LearningDrNAS
Overview

DrNAS

About

Code accompanying the paper
ICLR'2021: DrNAS: Dirichlet Neural Architecture Search paper
Xiangning Chen*, Ruochen Wang*, Minhao Cheng*, Xiaocheng Tang, Cho-Jui Hsieh

This code is based on the implementation of NAS-Bench-201 and PC-DARTS.

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution. With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based optimizer in an end-to-end manner. This formulation improves the generalization ability and induces stochasticity that naturally encourages exploration in the search space. Furthermore, to alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme that enables searching directly on large-scale tasks, eliminating the gap between search and evaluation phases. Extensive experiments demonstrate the effectiveness of our method. Specifically, we obtain a test error of 2.46% for CIFAR-10, 23.7% for ImageNet under the mobile setting. On NAS-Bench-201, we also achieve state-of-the-art results on all three datasets and provide insights for the effective design of neural architecture search algorithms.

Results

On NAS-Bench-201

The table below shows the test accuracy on NAS-Bench-201 space. We achieve the state-of-the-art results on all three datasets. On CIFAR-100, DrNAS even achieves the global optimal with no variance!

Method CIFAR-10 (test) CIFAR-100 (test) ImageNet-16-120 (test)
ENAS 54.30 ± 0.00 10.62 ± 0.27 16.32 ± 0.00
DARTS 54.30 ± 0.00 38.97 ± 0.00 18.41 ± 0.00
SNAS 92.77 ± 0.83 69.34 ± 1.98 43.16 ± 2.64
PC-DARTS 93.41 ± 0.30 67.48 ± 0.89 41.31 ± 0.22
DrNAS (ours) 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
optimal 94.37 73.51 47.31

For every search process, we sample 100 architectures from the current Dirichlet distribution and plot their accuracy range along with the current architecture selected by Dirichlet mean (solid line). The figure below shows that the accuracy range of the sampled architectures starts very wide but narrows gradually during the search phase. It indicates that DrNAS learns to encourage exploration at the early stages and then gradually reduces it towards the end as the algorithm becomes more and more confident of the current choice. Moreover, the performance of our architectures can consistently match the best performance of the sampled architectures, indicating the effectiveness of DrNAS.

On DARTS Space (CIFAR-10)

DrNAS achieves an average test error of 2.46%, ranking top amongst recent NAS results.

Method Test Error (%) Params (M) Search Cost (GPU days)
ENAS 2.89 4.6 0.5
DARTS 2.76 ± 0.09 3.3 1.0
SNAS 2.85 ± 0.02 2.8 1.5
PC-DARTS 2.57 ± 0.07 3.6 0.1
DrNAS (ours) 2.46 ± 0.03 4.1 0.6

On DARTS Space (ImageNet)

DrNAS can perform a direct search on ImageNet and achieves a top-1 test error below 24.0%!

Method Top-1 Error (%) Params (M) Search Cost (GPU days)
DARTS* 26.7 4.7 1.0
SNAS* 27.3 4.3 1.5
PC-DARTS 24.2 5.3 3.8
DSNAS 25.7 - -
DrNAS (ours) 23.7 5.7 4.6

* not a direct search

Usage

Architecture Search

Search on NAS-Bench-201 Space: (3 datasets to choose from)

  • Data preparation: Please first download the 201 benchmark file and prepare the api follow this repository.

  • cd 201-space && python train_search.py

  • With Progressively Pruning: cd 201-space && python train_search_progressive.py

Search on DARTS Space:

  • Data preparation: For a direct search on ImageNet, we follow PC-DARTS to sample 10% and 2.5% images for earch class as train and validation.

  • CIFAR-10: cd DARTS-space && python train_search.py

  • ImageNet: cd DARTS-space && python train_search_imagenet.py

Architecture Evaluation

  • CIFAR-10: cd DARTS-space && python train.py --cutout --auxiliary

  • ImageNet: cd DARTS-space && python train_imagenet.py --auxiliary

Reference

If you find this code useful in your research please cite

@inproceedings{chen2021drnas,
    title={Dr{\{}NAS{\}}: Dirichlet Neural Architecture Search},
    author={Xiangning Chen and Ruochen Wang and Minhao Cheng and Xiaocheng Tang and Cho-Jui Hsieh},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=9FWas6YbmB3}
}

Related Publications

Owner
Xiangning Chen
UCLA CS Ph.D. Student
Xiangning Chen
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023