PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

Overview

PyTorch NeRF and pixelNeRF

NeRF: Open NeRF in Colab

Tiny NeRF: Open Tiny NeRF in Colab

pixelNeRF: Open pixelNeRF in Colab

This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis" and the pixelNeRF model described in "pixelNeRF: Neural Radiance Fields from One or Few Images". While there are other PyTorch implementations out there (e.g., this one and this one for NeRF, and the authors' official implementation for pixelNeRF), I personally found them somewhat difficult to follow, so I decided to do a complete rewrite of NeRF myself. I tried to stay as close to the authors' text as possible, and I added comments in the code referring back to the relevant sections/equations in the paper. The final result is a tight 357 lines of heavily commented code (303 sloc—"source lines of code"—on GitHub) all contained in a single file. For comparison, this PyTorch implementation has approximately 970 sloc spread across several files, while this PyTorch implementation has approximately 905 sloc.

run_tiny_nerf.py trains a simplified NeRF model inspired by the "Tiny NeRF" example provided by the NeRF authors. This NeRF model does not use fine sampling and the MLP is smaller, but the code is otherwise identical to the full model code. At only 155 sloc, it might be a good place to start for people who are completely new to NeRF. If you prefer your code more object-oriented, check out run_nerf_alt.py and run_tiny_nerf_alt.py.

A Colab notebook for the full model can be found here, while a notebook for the tiny model can be found here. The generate_nerf_dataset.py script was used to generate the training data of the ShapeNet car.

For the following test view:

run_nerf.py generated the following after 20,100 iterations (a few hours on a P100 GPU):

Loss: 0.00022201683896128088

while run_tiny_nerf.py generated the following after 19,600 iterations (~35 minutes on a P100 GPU):

Loss: 0.0004151524917688221

The advantages of streamlining NeRF's code become readily apparent when trying to extend NeRF. For example, training a pixelNeRF model only required making a few changes to run_nerf.py bringing it to 370 sloc (notebook here). For comparison, the official pixelNeRF implementation has approximately 1,300 pixelNeRF-specific (i.e., not related to the image encoder or dataset) sloc spread across several files. The generate_pixelnerf_dataset.py script was used to generate the training data of ShapeNet cars.

For the following source object and view:

and target view:

run_pixelnerf.py generated the following after 73,243 iterations (~12 hours on a P100 GPU; the full pixelNeRF model was trained for 400,000 iterations, which took six days):

Loss: 0.004468636587262154

The "smearing" is an artifact caused by the bounding box sampling method.

Similarly, training an "object-centric NeRF" (i.e., where the object is rotated instead of the camera) is identical to run_tiny_nerf.py (notebook here). Rotating an object is equivalent to holding the object stationary and rotating both the camera and the lighting in the opposite direction, which is how the object-centric dataset is generated in generate_obj_nerf_dataset.py.

For the following test view:

run_tiny_obj_nerf.py generated the following after 19,400 iterations (~35 minutes on a P100 GPU):

Loss: 0.0005469498573802412

Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022