ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Overview

Sign-Agnostic Convolutional Occupancy Networks

Paper | Supplementary | Video | Teaser Video | Project Page

This repository contains the implementation of the paper:

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Network ICCV 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{tang2021sign,
  title={SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks},
  author={Tang, Jiapeng and Lei, Jiabao and Xu, Dan and Ma, Feiying and Jia, Kui and Zhang, Lei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact Jiapeng Tang for questions, comments and reporting bugs.

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sa_conet using

conda env create -f environment.yaml
conda activate sa_conet

Note: you might need to install torch-scatter mannually following the official instruction:

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Reconstruct Large-Scale Matterport3D Scene

You can now quickly test our code on the real-world scene shown in the teaser. To this end, simply run:

python generate_optim_largescene.py configs/pointcloud_crop/demo_matterport.yaml

This script should create a folder out/demo_matterport/generation where the output meshes and input point cloud are stored.

Note: This experiment corresponds to our fully convolutional model, which we train only on the small crops from our synthetic room dataset. This model can be directly applied to large-scale real-world scenes with real units and generate meshes in a sliding-window manner, as shown in the teaser. More details can be found in section D.1 of our supplementary material. For training, you can use the script pointcloud_crop/room_grid64.yaml.

Reconstruct Synthetic Indoor Scene

You can also test on our synthetic room dataset by running:

python generate_optim_scene.py configs/pointcloud/demo_syn_room.yaml

Reconstruct ShapeNet Object

You can also test on the ShapeNet dataset by running:

python generate_optim_object.py configs/pointcloud/demo_shapenet.yaml --this file needs to be created.

Dataset

To evaluate a pretrained model or train a new model from scratch, you have to obtain the respective dataset. In this paper, we consider 4 different datasets:

ShapeNet

You can download the dataset (73.4 GB) by running the script from Occupancy Networks. After, you should have the dataset in data/ShapeNet folder.

Synthetic Indoor Scene Dataset

For scene-level reconstruction, we use a synthetic dataset of 5000 scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table). There are also ground planes and randomly sampled walls.

You can download the preprocessed data (144 GB) by ConvONet using

bash scripts/download_data.sh

This script should download and unpack the data automatically into the data/synthetic_room_dataset folder.
Note: The point-wise semantic labels are also provided in the dataset, which might be useful.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

  • download the ShapeNet dataset as described above.
  • check scripts/dataset_synthetic_room/build_dataset.py, modify the path and run the code.

Matterport3D

Download Matterport3D dataset from the official website. And then, use scripts/dataset_matterport/build_dataset.py to preprocess one of your favorite scenes. Put the processed data into data/Matterport3D_processed folder.

ScanNet

Download ScanNet v2 data from the official ScanNet website. Then, you can preprocess data with: scripts/dataset_scannet/build_dataset.py and put into data/ScanNet folder.
Note: Currently, the preprocess script normalizes ScanNet data to a unit cube for the comparison shown in the paper, but you can easily adapt the code to produce data with real-world metric. You can then use our fully convolutional model to run evaluation in a sliding-window manner.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to perform sign-agnostic optimzation, run the pre-trained models, and train new models from scratch.

Mesh Generation for ConvOnet

To generate meshes using a pre-trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use pre-trained models The easiest way is to use a pre-trained model. You can do this by using one of the config files under the pretrained folders.

For example, for 3D reconstruction from noisy point cloud with our 3-plane model on the synthetic room dataset, you can simply run:

python generate.py configs/pointcloud/pretrained/room_3plane.yaml

The script will automatically download the pretrained model and run the mesh generation. You can find the outputs in the out/.../generation_pretrained folders

Note that the config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

The provided following pretrained models are:

pointcloud/shapenet_3plane.pt
pointcloud/room_grid64.pt
pointcloud_crop/room_grid64.pt

Sign-Agnostic Optimization of ConvONet

Before the sign-agnostic, test-time optimization on the Matterport3D dataset, we firstly run the below script to preprocess the testset.

python scripts/dataset_matterport/make_cropscene_dataset.py --in_folder $in_folder --out_folder $out_folder --do_norm

Please specify the in_folder and out_folder.

To perform sign-agnostic, test-time optimization for more accurate surface mesh generation using a pretrained model, use

python generate_optim_object.py configs/pointcloud/test_optim/shapenet_3plane.yaml
python generate_optim_scene.py configs/pointcloud/test_optim/room_grid64.yaml
python generate_optim_largescene.py configs/pointcloud_crop/test_optim/room_grid64.yaml

Evaluation

For evaluation of the models, we provide the scripts eval_meshes.py and eval_meshes_optim.py. You can run it using:

python eval_meshes.py CONFIG.yaml
python eval_meshes_optim.py CONFIG.yaml

The scripts takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Training

Finally, to pretrain a new network from scratch, run:

python train.py CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Acknowledgements

Most of the code is borrowed from ConvONet. We thank Songyou Peng for his great works.

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022