ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Overview

Sign-Agnostic Convolutional Occupancy Networks

Paper | Supplementary | Video | Teaser Video | Project Page

This repository contains the implementation of the paper:

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Network ICCV 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{tang2021sign,
  title={SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks},
  author={Tang, Jiapeng and Lei, Jiabao and Xu, Dan and Ma, Feiying and Jia, Kui and Zhang, Lei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact Jiapeng Tang for questions, comments and reporting bugs.

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sa_conet using

conda env create -f environment.yaml
conda activate sa_conet

Note: you might need to install torch-scatter mannually following the official instruction:

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Reconstruct Large-Scale Matterport3D Scene

You can now quickly test our code on the real-world scene shown in the teaser. To this end, simply run:

python generate_optim_largescene.py configs/pointcloud_crop/demo_matterport.yaml

This script should create a folder out/demo_matterport/generation where the output meshes and input point cloud are stored.

Note: This experiment corresponds to our fully convolutional model, which we train only on the small crops from our synthetic room dataset. This model can be directly applied to large-scale real-world scenes with real units and generate meshes in a sliding-window manner, as shown in the teaser. More details can be found in section D.1 of our supplementary material. For training, you can use the script pointcloud_crop/room_grid64.yaml.

Reconstruct Synthetic Indoor Scene

You can also test on our synthetic room dataset by running:

python generate_optim_scene.py configs/pointcloud/demo_syn_room.yaml

Reconstruct ShapeNet Object

You can also test on the ShapeNet dataset by running:

python generate_optim_object.py configs/pointcloud/demo_shapenet.yaml --this file needs to be created.

Dataset

To evaluate a pretrained model or train a new model from scratch, you have to obtain the respective dataset. In this paper, we consider 4 different datasets:

ShapeNet

You can download the dataset (73.4 GB) by running the script from Occupancy Networks. After, you should have the dataset in data/ShapeNet folder.

Synthetic Indoor Scene Dataset

For scene-level reconstruction, we use a synthetic dataset of 5000 scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table). There are also ground planes and randomly sampled walls.

You can download the preprocessed data (144 GB) by ConvONet using

bash scripts/download_data.sh

This script should download and unpack the data automatically into the data/synthetic_room_dataset folder.
Note: The point-wise semantic labels are also provided in the dataset, which might be useful.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

  • download the ShapeNet dataset as described above.
  • check scripts/dataset_synthetic_room/build_dataset.py, modify the path and run the code.

Matterport3D

Download Matterport3D dataset from the official website. And then, use scripts/dataset_matterport/build_dataset.py to preprocess one of your favorite scenes. Put the processed data into data/Matterport3D_processed folder.

ScanNet

Download ScanNet v2 data from the official ScanNet website. Then, you can preprocess data with: scripts/dataset_scannet/build_dataset.py and put into data/ScanNet folder.
Note: Currently, the preprocess script normalizes ScanNet data to a unit cube for the comparison shown in the paper, but you can easily adapt the code to produce data with real-world metric. You can then use our fully convolutional model to run evaluation in a sliding-window manner.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to perform sign-agnostic optimzation, run the pre-trained models, and train new models from scratch.

Mesh Generation for ConvOnet

To generate meshes using a pre-trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use pre-trained models The easiest way is to use a pre-trained model. You can do this by using one of the config files under the pretrained folders.

For example, for 3D reconstruction from noisy point cloud with our 3-plane model on the synthetic room dataset, you can simply run:

python generate.py configs/pointcloud/pretrained/room_3plane.yaml

The script will automatically download the pretrained model and run the mesh generation. You can find the outputs in the out/.../generation_pretrained folders

Note that the config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

The provided following pretrained models are:

pointcloud/shapenet_3plane.pt
pointcloud/room_grid64.pt
pointcloud_crop/room_grid64.pt

Sign-Agnostic Optimization of ConvONet

Before the sign-agnostic, test-time optimization on the Matterport3D dataset, we firstly run the below script to preprocess the testset.

python scripts/dataset_matterport/make_cropscene_dataset.py --in_folder $in_folder --out_folder $out_folder --do_norm

Please specify the in_folder and out_folder.

To perform sign-agnostic, test-time optimization for more accurate surface mesh generation using a pretrained model, use

python generate_optim_object.py configs/pointcloud/test_optim/shapenet_3plane.yaml
python generate_optim_scene.py configs/pointcloud/test_optim/room_grid64.yaml
python generate_optim_largescene.py configs/pointcloud_crop/test_optim/room_grid64.yaml

Evaluation

For evaluation of the models, we provide the scripts eval_meshes.py and eval_meshes_optim.py. You can run it using:

python eval_meshes.py CONFIG.yaml
python eval_meshes_optim.py CONFIG.yaml

The scripts takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Training

Finally, to pretrain a new network from scratch, run:

python train.py CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Acknowledgements

Most of the code is borrowed from ConvONet. We thank Songyou Peng for his great works.

Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023