You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

Related tags

Deep LearningYOSO
Overview

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hash- ing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures).

Requirements

docker, nvidia-docker

Start Docker Container

Under YOSO folder, run

docker run --ipc=host --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES= -v "$PWD:/workspace" -it mlpen/transformers:4

For Nvidia's 30 series GPU, run

docker run --ipc=host --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES= -v "$PWD:/workspace" -it mlpen/transformers:5

Then, the YOSO folder is mapped to /workspace in the container.

BERT

Datasets

To be updated

Pre-training

To start pre-training of a specific configuration: create a folder YOSO/BERT/models/ (for example, bert-small) and write YOSO/BERT/models/ /config.json to specify model and training configuration, then under YOSO/BERT folder, run

python3 run_pretrain.py --model 
   

   

The command will create a YOSO/BERT/models/ /model folder holding all checkpoints and log file.

Pre-training from Different Model's Checkpoint

Copy a checkpoint (one of .model or .cp file) from YOSO/BERT/models/ /model folder to YOSO/BERT/models/ folder and add a key-value pair in YOSO/BERT/models/ /config.json : "from_cp": " " . One example is shown in YOSO/BERT/models/bert-small-4096/config.json. This procedure also works for extending the max sequence length of a model (For example, use bert-small pre-trained weights as initialization for bert-small-4096).

GLUE Fine-tuning

Under YOSO/BERT folder, run

python3 run_glue.py --model 
   
     --batch_size 
    
      --lr 
     
       --task 
      
        --checkpoint 
        
       
      
     
    
   

For example,

python3 run_glue.py --model bert-small --batch_size 32 --lr 3e-5 --task MRPC --checkpoint cp-0249.model

The command will create a log file in YOSO/BERT/models/ /model .

Long Range Arena Benchmark

Datasets

To be updated

Run Evaluations

To start evaluation of a specific model on a task in LRA benchmark:

  • Create a folder YOSO/LRA/models/ (for example, softmax)
  • Write YOSO/LRA/models/ /config.json to specify model and training configuration

Under YOSO/LRA folder, run

python3 run_task.py --model 
   
     --task 
    

    
   

For example, run

python3 run_task.py --model softmax --task listops

The command will create a YOSO/LRA/models/ /model folder holding the best validation checkpoint and log file. After completion, the test set accuracy can be found in the last line of the log file.

RoBERTa

Datasets

To be updated

Pre-training

To start pretraining of a specific configuration:

  • Create a folder YOSO/RoBERTa/models/ (for example, bert-small)
  • Write YOSO/RoBERTa/models/ /config.json to specify model and training configuration

Under YOSO/RoBERTa folder, run

python3 run_pretrain.py --model 
   

   

For example, run

python3 run_pretrain.py --model bert-small

The command will create a YOSO/RoBERTa/models/ /model folder holding all checkpoints and log file.

GLUE Fine-tuning

To fine-tune model on GLUE tasks:

Under YOSO/RoBERTa folder, run

python3 run_glue.py --model 
   
     --batch_size 
    
      --lr 
     
       --task 
      
        --checkpoint 
        
       
      
     
    
   

For example,

python3 run_glue.py --model bert-small --batch_size 32 --lr 3e-5 --task MRPC --checkpoint 249

The command will create a log file in YOSO/RoBERTa/models/ /model .

Citation

@article{zeng2021yoso,
  title={You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling},
  author={Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh},
  booktitle={Proceedings of the International Conference on Machine Learning},
  year={2021}
}
Owner
Zhanpeng Zeng
Zhanpeng Zeng
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021