No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

Related tags

Deep LearningTReS
Overview



wacv2021

Creat Environment

This code is train and test on Ubuntu 16.04 while using Anaconda, python 3.6.6, and pytorch 1.8.0. To set up the evironment run: conda env create -f environment.yml after installing the virtuall env you should be able to run python -c "import torch; print(torch.__version__)" in the terminal and see 1.8.0

Datasets

In this work we use 7 datasets for evaluation (LIVE, CSIQ, TID2013, KADID10K, CLIVE, KonIQ, LIVEFB)

To start training please make sure to follow the correct folder structure for each of the aformentioned datasets as provided bellow:

LIVE
live
    |--fastfading
    |    |  ...     
    |--blur
    |    |  ... 
    |--jp2k
    |    |  ...     
    |--jpeg
    |    |  ...     
    |--wn
    |    |  ...     
    |--refimgs
    |    |  ...     
    |--dmos.mat
    |--dmos_realigned.mat
    |--refnames_all.mat
    |--readme.txt
CSIQ
csiq
    |--dst_imgs_all
    |    |--1600.AWGN.1.png
    |    |  ... (you need to put all the distorted images here)
    |--src_imgs
    |    |--1600.png
    |    |  ...
    |--csiq.DMOS.xlsx
    |--csiq_label.txt
TID2013
tid2013
    |--distorted_images
    |--reference_images
    |--mos.txt
    |--mos_std.txt
    |--mos_with_names.txt
    |--readme
KADID10K
kadid10k
    |--distorted_images
    |    |--I01_01_01.png
    |    |  ...    
    |--reference_images
    |    |--I01.png
    |    |  ...    
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
CLIVE
clive
    |--Data
    |    |--I01_01_01.png
    |    |  ...    
    |--Images
    |    |--I01.png
    |    |  ...    
    |--ChallengeDB_release
    |    |--README.txt
    |--dmos.csv
    |--mv.sh.save
    |--mvv.sh
KonIQ
fblive
   |--1024x768
   |    |  992920521.jpg 
   |    |  ... (all the images should be here)     
   |--koniq10k_scores_and_distributions.csv
LIVEFB
fblive
   |--FLIVE
   |    |  AVA__149.jpg    
   |    |  ... (all the images should be here)     
   |--labels_image.csv

Training

The training scrips are provided in the run.sh. Please change the paths correspondingly. Please note that to achive the same performace the parameters should match the ones in the run.sh files.

Pretrained models

The pretrain models are provided here.

Acknowledgement

This code is borrowed parts from HyperIQA and DETR.

FAQs

- What is the difference between self-consistency and ensembling? and will the self-consistency increase the interface time? In ensampling methods, we need to have several models (with different initializations) and ensemble the results during the training and testing, but in our self-consistency model, we enforce one model to have consistent performance for one network during the training while the network has an input with different transformations. Our self-consistency model has the same interface time/parameters in the testing similar to the model without self-consistency. In other words, we are not adding any new parameters to the network and it won't affect the interface.
- What is the difference between self-consistency and augmentation? In augmentation, we augment an input and send it to one network, so although the network will become robust to different augmentation, it will never have the chance of enforcing the outputs to be the same for different versions of an input at the same time. In our self-consistency approach, we force the network to have a similar output for an image with a different transformation (in our case horizontal flipping) which leads to more robust performance. Please also note that we still use augmentation during the training, so our model is benefiting from the advantages of both augmentation and self-consistency. Also, please see Fig. 1 in the main paper, where we showed that models that used augmentation alone are sensitive to simple transformations.
- Why does the relative ranking loss apply to the samples with the highest and lowest quality scores, why not applying it to all the samples? 1) We did not see a significant improvement by applying our ranking loss to all the samples within each batch compared to the case that we just use extreme cases. 2) Considering more samples lead to more gradient back-propagation and therefore more computation during the training which causes slower training.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{golestaneh2021no,
  title={No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency},
  author={Golestaneh, S Alireza and Dadsetan, Saba and Kitani, Kris M},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={3209--3218},
  year={2022}
}

If you have any questions about our work, please do not hesitate to contact [email protected]

Owner
Alireza Golestaneh
Alireza Golestaneh
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021