Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

Related tags

Deep LearningREDQ
Overview

REDQ source code

Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05982

Mar 23, 2021: We have reorganized the code to make it cleaner and more readable and the first version is now released!

Mar 29, 2021: We tested the installation process and run the code, and everything seems to be working correctly. We are now working on the implementation video tutorial, which will be released soon.

May 3, 2021: We uploaded a video tutorial (shared via google drive), please see link below. Hope it helps!

Code for REDQ-OFE is still being cleaned up and will be released soon (essentially the same code but with additional input from a OFENet).

Code structure explained

The code structure is pretty simple and should be easy to follow.

In experiments/train_redq_sac.py you will find the main training loop. Here we set up the environment, initialize an instance of the REDQSACAgent class, specifying all the hyperparameters and train the agent. You can run this file to train a REDQ agent.

In redq/algos/redq_sac.py we provide code for the REDQSACAgent class. If you are trying to take a look at how the core components of REDQ are implemented, the most important function is the train() function.

In redq/algos/core.py we provide code for some basic classes (Q network, policy network, replay buffer) and some helper functions. These classes and functions are used by the REDQ agent class.

In redq/utils there are some utility classes (such as a logger) and helper functions that mostly have nothing to do with REDQ's core components.

Implementation video tutorial

Here is the link to a video tutorial we created that explains the REDQ implementation in detail:

REDQ code explained video tutorial (Google Drive Link)

Environment setup

Note: you don't need to exactly follow the tutorial here if you know well about how to install python packages.

First create a conda environment and activate it:

conda create -n redq python=3.6
conda activate redq 

Install PyTorch (or you can follow the tutorial on PyTorch official website). On Ubuntu (might also work on Windows but is not fully tested):

conda install pytorch==1.3.1 torchvision==0.4.2 cudatoolkit=10.1 -c pytorch

On OSX:

conda install pytorch==1.3.1 torchvision==0.4.2 -c pytorch

Install gym (0.17.2):

git clone https://github.com/openai/gym.git
cd gym
git checkout b2727d6
pip install -e .
cd ..

Install mujoco_py (2.0.2.1):

git clone https://github.com/openai/mujoco-py
cd mujoco-py
git checkout 379bb19
pip install -e . --no-cache
cd ..

For gym and mujoco_py, depending on your system, you might need to install some other packages, if you run into such problems, please refer to their official sites for guidance. If you want to test on Mujoco environments, you will also need to get Mujoco files and license from Mujoco website. Please refer to the Mujoco website for how to do this correctly.

Clone and install this repository (Although even if you don't install it you might still be able to use the code):

git clone https://github.com/watchernyu/REDQ.git
cd REDQ
pip install -e .

Train an REDQ agent

To train an REDQ agent, run:

python experiments/train_redq_sac.py

On a 2080Ti GPU, running Hopper to 125K will approximately take 10-12 hours. Running Humanoid to 300K will approximately take 26 hours.

Implement REDQ

If you intend to implement REDQ on your codebase, please refer to the paper and the tutorial (to be released) for guidance. In particular, in Appendix B of the paper, we discussed hyperparameters and some additional implementation details. One important detail is in the beginning of the training, for the first 5000 data points, we sample random action from the action space and do not perform any updates. If you perform a large number of updates with a very small amount of data, it can lead to severe bias accumulation and can negatively affect the performance.

For REDQ-OFE, as mentioned in the paper, for some reason adding PyTorch batch norm to OFENet will lead to divergence. So in the end we did not use batch norm in our code.

Reproduce the results

If you use a different PyTorch version, it might still work, however, it might be better if your version is close to the ones we used. We have found that for example, on Ant environment, PyTorch 1.3 and 1.2 give quite different results. The reason is not entirely clear.

Other factors such as versions of other packages (for example numpy) or environment (mujoco/gym) or even types of hardware (cpu/gpu) can also affect the final results. Thus reproducing exactly the same results can be difficult. However, if the package versions are the same, when averaged over a large number of random seeds, the overall performance should be similar to those reported in the paper.

As of Mar. 29, 2021, we have used the installation guide on this page to re-setup a conda environment and run the code hosted on this repo and the reproduced results are similar to what we have in the paper (though not exactly the same, in some environments, performance are a bit stronger and others a bit weaker).

Please open an issue if you find any problems in the code, thanks!

Acknowledgement

Our code for REDQ-SAC is partly based on the SAC implementation in OpenAI Spinup (https://github.com/openai/spinningup). The current code structure is inspired by the super clean TD3 source code by Scott Fujimoto (https://github.com/sfujim/TD3).

Owner
Ph.D. student at NYU. Deep reinforcement learning researcher.
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023