A testcase generation tool for Persistent Memory Programs.

Overview

PMFuzz

PMFuzz

PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck)

If you find PMFuzz useful in your research, please cite:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan
PMFuzz: Test Case Generation for Persistent Memory Programs
The International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021

BibTex

@inproceedings{liu2021pmfuzz,
  title={PMFuzz: Test Case Generation for Persistent Memory Programs},
  author={Liu, Sihang and Mahar, Suyash and Ray, Baishakhi and Khan, Samira},
  booktitle={Proceedings of the Twenty-sixth International Conference on Architectural Support for Programming Languages and Operating Systems},
  year={2021}
}

Dependencies

PMFuzz was tested using the following environment configuration, other versions may work:

  1. Ubuntu 18.04
  2. NDCTL v64 or higher
  3. libunwind (libunwind-dev)
  4. libini-config (libini-config-dev)
  5. Python 3.8
  6. GNUMake >= 3.82
  7. Kernel version 5.4
  8. Anaconda or virtualenv (recommended)

For compiling documentation:

  1. doxygen
  2. pdflatex
  3. doxypypy

Compiling PMFuzz

Build PMFuzz and AFL

make -j $(nproc --all)

Install PMFuzz

sudo make install

Now, pmfuzz-fuzz should be available as an executable:

pmfuzz-fuzz --help

The following man pages are also installed:

man 1 pmfuzz-fuzz
man 7 libpmfuzz
man 7 libfakepmfuzz

To uninstall PMFuzz, run the following command:

sudo make uninstall

Compiling PMFuzz Docker image

PMFuzz also comes with a docker file to automatically configure and install pmfuzz. To build the image, run the following command from the root of the repository:

docker build -t pmfuzz-v0.9 .

The raw dockerfile is also available here: /Dockerfile.

Using PMFuzz

After installing PMFuzz, use annotations by including the PMFuzz header file:

#include "pmfuzz/pmfuzz.h"

int main() {
	printf("PMFuzz version: %s\n", pmfuzz_version_str);
}

The program would then have to be linked with either libpmfuzz or libfakepmfuzz. e.g.,

example: example.o
	$(CXX) -o $@ $< -lfakepmfuzz # or -lpmfuzz

To compile a program linked with libpmfuzz, you'd need to use PMFuzz's AFL++ version of gcc/clang. Check build/bin after building PMFuzz.

For debugging, libfakepmfuzz exports the same interface but no actual tracking mechanism, allowing it to compile with any C/C++ compiler.

An example program is available in src/example. The original ASPLOS 2021 artifact is available at https://github.com/Systems-ShiftLab/pmfuzz_asplos21_ae.

libpmfuzz API is available at docs/libpmfuzz.7.md

Compiling Documentation

Run make docs from the root, and all the documentation will be linked in the docs/ directory.

Some man pages are available as markdown formatted files:

  1. docs/libpmfuzz.7.md
  2. docs/pmfuzz-fuzz.1.md

Running custom configuration

PMFuzz uses a YML based configuration to set different parameters for fuzzing, to write a custom configuration, please follow one of the existing examples in src/pmfuzz/configs/examples/ directory.

More information on PMFuzz's syntax is here.

Modifying PMFuzz

PMFuzz was written in a modular way allowing part of PMFuzz's components to be swapped with something that has the same interface. If you have a question please open a new issue or a discussion.

Other useful information

Env variables

NOTE: If a variable doesn't have a possible value next to it, that variable would be enabled by setting it to any non-empty value (including 0).

  1. USE_FAKE_MMAP=(0,1): Enables fake mmap which mounts an image in the volaile memory.
  2. PMEM_MMAP_HINT=<addr>: Address of the mount point of the pool.
  3. ENABLE_CNST_IMG=(0,1): Disables default PMDK's behaviour that generates non-identical images for same input.
  4. FI_MODE=(<empty or unset>|IMG_GEN|IMG_REP): See libpmfuzz.c
  5. FAILURE_LIST=<path-to-output-file>: See libpmfuzz.c
  6. PMFUZZ_DEBUG=(0,1): Enables debug output from libpmfuzz
  7. ENABLE_PM_PATH: Enables deep paths in PMFuzz
  8. GEN_ALL_CS: Partially disables the probabilistic generation of crash sites and more of them are generated from libpmfuzz.c
  9. IMG_CREAT_FINJ: Disables the probabilistic generation of crash sites and all of them are generated from libpmfuzz.c
  10. PMFUZZ_SKIP_TC_CHECK: Disable testcase size check in AFL++
  11. PRIMITIVE_BASELINE_MODE: Makes workload delete image on start if the pool exists

Adding git hook for development

Following command adds a pre-commit hook to check if the tests pass:

git config --local core.hooksPath .githooks/

Reasons for Common errors

1. FileNotFoundError for instance's pid file

Raised when AFL cannot bind to a free core or no core is free.

2. Random tar command failed

Check if no free disk space is left on the device

3. shmget (2): No space left on device

Run:

ipcrm -a

Warning: This removes all user owned shared memory segments, don't run with superuser privilege or on a machine with other critical applications running.

Licensing

PMFuzz is licensed under BSD-3-clause except noted otherwise.

PMFuzz uses of the following open-source software:

  1. Preeny (license)
    Preeny was modified to fix a bug in desock. All changes are contained in vendor/pathes/preeny_path
  2. AFL++ (license)
    AFL++ was modified to include support for persistent memory tracking for PMFuzz.
Owner
Systems Research at ShiftLab
Systems Research at ShiftLab
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023