Official Pytorch implementation of RePOSE (ICCV2021)

Related tags

Deep LearningRePOSE
Overview

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link]

overview

Abstract

We present RePOSE, a fast iterative refinement method for 6D object pose estimation. Prior methods perform refinement by feeding zoomed-in input and rendered RGB images into a CNN and directly regressing an update of a refined pose. Their runtime is slow due to the computational cost of CNN, which is especially prominent in multiple-object pose refinement. To overcome this problem, RePOSE leverages image rendering for fast feature extraction using a 3D model with a learnable texture. We call this deep texture rendering, which uses a shallow multi-layer perceptron to directly regress a view-invariant image representation of an object. Furthermore, we utilize differentiable Levenberg-Marquardt (LM) optimization to refine a pose fast and accurately by minimizing the feature-metric error between the input and rendered image representations without the need of zooming in. These image representations are trained such that differentiable LM optimization converges within few iterations. Consequently, RePOSE runs at 92 FPS and achieves state-of-the-art accuracy of 51.6% on the Occlusion LineMOD dataset - a 4.1% absolute improvement over the prior art, and comparable result on the YCB-Video dataset with a much faster runtime.

Prerequisites

  • Python >= 3.6
  • Pytorch == 1.9.0
  • Torchvision == 0.10.0
  • CUDA == 10.1

Downloads

Installation

  1. Set up the python environment:
    $ pip install torch==1.9.0 torchvision==0.10.0
    $ pip install Cython==0.29.17
    $ sudo apt-get install libglfw3-dev libglfw3
    $ pip install -r requirements.txt
    
    # Install Differentiable Renderer
    $ cd renderer
    $ python3 setup.py install
    
  2. Compile cuda extensions under lib/csrc:
    ROOT=/path/to/RePOSE
    cd $ROOT/lib/csrc
    export CUDA_HOME="/usr/local/cuda-10.1"
    cd ../ransac_voting
    python setup.py build_ext --inplace
    cd ../camera_jacobian
    python setup.py build_ext --inplace
    cd ../nn
    python setup.py build_ext --inplace
    cd ../fps
    python setup.py
    
  3. Set up datasets:
    $ ROOT=/path/to/RePOSE
    $ cd $ROOT/data
    
    $ ln -s /path/to/linemod linemod
    $ ln -s /path/to/linemod_orig linemod_orig
    $ ln -s /path/to/occlusion_linemod occlusion_linemod
    
    $ cd $ROOT/data/model/
    $ unzip pretrained_models.zip
    
    $ cd $ROOT/cache/LinemodTest
    $ unzip ape.zip benchvise.zip .... phone.zip
    $ cd $ROOT/cache/LinemodOccTest
    $ unzip ape.zip can.zip .... holepuncher.zip
    

Testing

We have 13 categories (ape, benchvise, cam, can, cat, driller, duck, eggbox, glue, holepuncher, iron, lamp, phone) on the LineMOD dataset and 8 categories (ape, can, cat, driller, duck, eggbox, glue, holepuncher) on the Occlusion LineMOD dataset. Please choose the one category you like (replace ape with another category) and perform testing.

Evaluate the ADD(-S) score

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Test:
    # Test on the LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Test on the Occlusion LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Visualization

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Visualize:
    # Visualize the results of the LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Visualize the results of the Occlusion LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Citation

@InProceedings{Iwase_2021_ICCV,
    author    = {Iwase, Shun and Liu, Xingyu and Khirodkar, Rawal and Yokota, Rio and Kitani, Kris M.},
    title     = {RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {3303-3312}
}

Acknowledgement

Our code is largely based on clean-pvnet and our rendering code is based on neural_renderer. Thank you so much for making these codes publicly available!

Contact

If you have any questions about the paper and implementation, please feel free to email me ([email protected])! Thank you!

Owner
Shun Iwase
Carnegie Mellon University, Robotics Institute
Shun Iwase
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022