Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

Overview

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece is a "tokenizer" for reducing entity vocabulary size in knowledge graphs. Instead of shallow embedding every node to a vector, we first "tokenize" each node by K anchor nodes and M relation types in its relational context. Then, the resulting hash sequence is encoded through any injective function, e.g., MLP or Transformer.

Similar to Byte-Pair Encoding and WordPiece tokenizers commonly used in NLP, NodePiece can tokenize unseen nodes attached to the seen graph using the same anchor and relation vocabulary, which allows NodePiece to work out-of-the-box in the inductive settings using all the well-known scoring functions in the classical KG completion (like TransE or RotatE). NodePiece also works with GNNs (we tested on node classification, but not limited to it, of course).

NodePiece source code

The repo contains the code and experimental setups for reproducibility studies.

Each experiment resides in the respective folder:

  • LP_RP - link prediction and relation prediction
  • NC - node classification
  • OOS_LP - out-of-sample link prediction

The repo is based on Python 3.8. wandb is an optional requirement in case you have an existing account there and would like to track experimental results. If you have a wandb account, the repo assumes you've performed

wandb login <your_api_key>

Using a GPU is recommended.

First, run a script which will download all the necessary pre-processed data and datasets. It takes approximately 1 GB.

sh download_data.sh

We packed the pre-processed data for faster experimenting with the repo. Note that there are two NodePiece tokenization modes (-tkn_mode [option]): path and bfs:

  • path is an old tokenization strategy (based on finding shortest paths between each node and all anchors) under which we performed the experiments and packed the data for reproducibility;
  • bfs is a new strategy (based on iterative expansion of node's neighborhood until a desired number of anchors is reached) which is 5-50x faster and takes 4-5x less space depending on the KG. Currently, works for transductive LP/RP tasks;

Pre-processing times tested on M1 MacBook Pro / 8 GB:

mode FB15k-237 / vocab size WN18RR / vocab size YAGO 3-10 / vocab size
path 2 min / 28 MB 5 min / 140 MB ~ 5 hours / 240 MB
bfs 8 sec / 7.5 MB 30 sec / 20 MB 4.5 min / 40 MB

CoDEx-Large and YAGO path pre-processing is better run on a server with 16-32 GB RAM and might take 2-5 hours depending on the chosen number of anchors.

NB: we seek to further improve the algorithms to make the tokenization process even faster than the bfs strategy.

Second, install the dependencies in requirements.txt. Note that when installing Torch-Geometric you might want to use pre-compiled binaries for a certain version of python and torch. Check the manual here.

In the link prediction tasks, all the necessary datasets will be downloaded upon first script execution.

Link Prediction

The link prediction (LP) and relation prediction (RP) tasks use models, datasets, and evaluation protocols from PyKEEN.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py.

  • Run the fb15k-237 experiment
python run_lp.py -loop lcwa -loss bce -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -sample_rels 15 -smoothing 0.4 -epochs 401
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -margin 15 -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -pool cat -embedding 200 -negs 20 -subbatch 2000 -sample_rels 4 -epochs 601
  • Run the codex-l experiment
python run_lp.py -loop lcwa -loss bce -b 256 -data codex_l -anchors 7000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -subbatch 10000 -sample_rels 6 -smoothing 0.3 -epochs 120
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -margin 50 -b 512 -data yago -anchors 10000 -sp 100 -lr 0.00025 -ft_maxp 20 -pool cat -embedding 200 -subbatch 2000 -sample_rels 5 -negs 10 -epochs 601

Test evaluation reproducibility patch

PyKEEN 1.0.5 used in this repo has been identified to have issues at the filtering stage when evaluating on the test set. In order to fully reproduce the reported test set numbers for transductive LP/RP experiments from the paper and resolve this issue, please apply the patch from the lp_rp/patch folder:

  1. Locate pykeen in your environment installation:
<path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen
  1. Replace the evaluation/evaluator.py with the one from the patch folder
cp ./lp_rp/patch/evaluator.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/evaluation/
  1. Replace the stoppers/early_stopping.py with the one from the patch folder
cp ./lp_rp/patch/early_stopping.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/stoppers/

This won't be needed once we port the codebase to newest versions of PyKEEN (1.4.0+) where this was fixed

Relation Prediction

The setup is very similar to that of link prediction (LP) but we predict relations (h,?,t) now.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py

  • Run the fb15k-237 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 15 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 15 -epochs 21 --rel-prediction True
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -margin 12 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 4 -epochs 151 --rel-prediction True
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data yago -anchors 10000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 25 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 5 -epochs 7 --rel-prediction True

Node Classification

Navigate to the nc folder: cd nc .

The list of CLI params can be found in run_nc.py

If you have a GPU, use DEVICE cuda otherwise DEVICE cpu.

The run on 5% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.05 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

The run on 10% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.1 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

Out-of-sample Link Prediction

Navigate to the oos_lp folder: cd oos_lp/src.

The list of CLI params can be found in main.py.

  • Run the oos fb15k-237 experiment
python main.py -dataset FB15k-237 -model_name DM_NP_fb -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 1000 -sample_rels 15
  • Run the oos yago3-10 experiment
python main.py -dataset YAGO3-10 -model_name DM_NP_yago -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 10000 -sample_rels 5

Citation

If you find this work useful, please consider citing the paper:

@misc{galkin2021nodepiece,
    title={NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs},
    author={Mikhail Galkin and Jiapeng Wu and Etienne Denis and William L. Hamilton},
    year={2021},
    eprint={2106.12144},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Michael Galkin
Michael Galkin
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022