Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

Related tags

Deep LearningDFN
Overview

DFN:Distributed Feedback Network for Single-Image Deraining

Abstract

Recently, deep convolutional neural networks have achieved great success for single-image deraining. However, affected by the intrinsic overlapping between rain streaks and background texture patterns, a majority of these methods tend to almost remove texture details in rain-free regions and lead to over-smoothing effects in the recovered background. To generate reasonable rain streak layers and improve the reconstruction quality of the background, we propose a distributed feedback network (DFN) in recurrent structure. A novel feedback block is designed to implement the feedback mechanism. In each feedback block, the hidden state with high-level information (output) will flow into the next iteration to correct the low-level representations (input). By stacking multiple feedback blocks, the proposed network where the hidden states are distributed can extract powerful high-level representations for rain streak layers. Curriculum learning is employed to connect the loss of each iteration and ensure that hidden states contain the notion of output. In addition, a self-ensemble strategy for rain removal task, which can retain the approximate vertical character of rain streaks, is explored to maximize the potential performance of the deraining model. Extensive experimental results demonstrated the superiority of the proposed method in comparison with other deraining methods.

Image

Requirements

*Python 3.7,Pytorch >= 0.4.0
*Requirements: opencv-python
*Platforms: Ubuntu 18.04,cuda-10.2
*MATLAB for calculating PSNR and SSIM

Datasets

DFN is trained and tested on five benchamark datasets: Rain100L[1],Rain100H[1],RainLight[2],RainHeavy[2] and Rain12[3]. It should be noted that DFN is trained on strict 1,254 images for Rain100H.

*Note:

(i) The authors of [1] updated the Rain100L and Rain100H, we call the new datasets as RainLight and RainHeavy here.

(ii) The Rain12 contains only 12 pairs of testing images, we use the model trained on Rain100L to test on Rain12.

Getting Started

Test

All the pre-trained models were placed in ./logs/.

Run the test_DFN.py to obtain the deraining images. Then, you can calculate the evaluation metrics by run the MATLAB scripts in ./statistics/. For example, if you want to compute the average PSNR and SSIM on Rain100L, you can run the Rain100L.m.

Train

If you want to train the models, you can run the train_DFN.py and don't forget to change the args in this file. Or, you can run in the terminal by the following code:

python train_DFN.py --save_path path_to_save_trained_models --data_path path_of_the_training_dataset

Results

Average PSNR and SSIM values of DFN on five datasets are shown:

Datasets GMM DDN ResGuideNet JORDER-E SSIR PReNet BRN MSPFN DFN DFN+
Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 - 32.37/0.926 37.48/0.979 38.16/0.982 37.5839/0.9784 39.22/0.985 39.85/0.987
Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 - 22.47/0.716 29.62/0.901 30.73/0.916 30.8239/0.9055 31.40/0.926 31.81/0.930
RainLight - 31.66/0.922 - 39.13/0.985 32.20/0.929 37.93/0.983 38.86/0.985 39.7540/0.9862 39.53/0.987 40.12/0.988
RainHeavy - 22.03/0.713 - 29.21/0.891 22.17/0.719 29.36/0.903 30.27/0.917 30.7112/0.9129 31.07/0.927 31.47/0.931
Rain12 32.02/0.855 31.78/0.900 29.45/0.938 - 34.02/0.935 36.66/0.961 36.74/0.959 35.7780/0.9514 37.19/0.961 37.55/0.963

Image

References

[1]Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2]Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

[3]Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

Citation

If you find our research or code useful for you, please cite our paper:

@article{DING2021,
  title = {Distributed Feedback Network for Single-Image Deraining},
  journal = {Information Sciences},
  year = {2021},
  issn = {0020-0255},
  doi = {https://doi.org/10.1016/j.ins.2021.02.080},
  url = {https://www.sciencedirect.com/science/article/pii/S0020025521002371},
  author = {Jiajun Ding and Huanlei Guo and Hang Zhou and Jun Yu and Xiongxiong He and Bo Jiang}
}
Owner
Zhejiang University of Technology(ZJUT). Research: Image Enhencement, Few-shot Learning, GAN.
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022