Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

Related tags

Deep LearningDFN
Overview

DFN:Distributed Feedback Network for Single-Image Deraining

Abstract

Recently, deep convolutional neural networks have achieved great success for single-image deraining. However, affected by the intrinsic overlapping between rain streaks and background texture patterns, a majority of these methods tend to almost remove texture details in rain-free regions and lead to over-smoothing effects in the recovered background. To generate reasonable rain streak layers and improve the reconstruction quality of the background, we propose a distributed feedback network (DFN) in recurrent structure. A novel feedback block is designed to implement the feedback mechanism. In each feedback block, the hidden state with high-level information (output) will flow into the next iteration to correct the low-level representations (input). By stacking multiple feedback blocks, the proposed network where the hidden states are distributed can extract powerful high-level representations for rain streak layers. Curriculum learning is employed to connect the loss of each iteration and ensure that hidden states contain the notion of output. In addition, a self-ensemble strategy for rain removal task, which can retain the approximate vertical character of rain streaks, is explored to maximize the potential performance of the deraining model. Extensive experimental results demonstrated the superiority of the proposed method in comparison with other deraining methods.

Image

Requirements

*Python 3.7,Pytorch >= 0.4.0
*Requirements: opencv-python
*Platforms: Ubuntu 18.04,cuda-10.2
*MATLAB for calculating PSNR and SSIM

Datasets

DFN is trained and tested on five benchamark datasets: Rain100L[1],Rain100H[1],RainLight[2],RainHeavy[2] and Rain12[3]. It should be noted that DFN is trained on strict 1,254 images for Rain100H.

*Note:

(i) The authors of [1] updated the Rain100L and Rain100H, we call the new datasets as RainLight and RainHeavy here.

(ii) The Rain12 contains only 12 pairs of testing images, we use the model trained on Rain100L to test on Rain12.

Getting Started

Test

All the pre-trained models were placed in ./logs/.

Run the test_DFN.py to obtain the deraining images. Then, you can calculate the evaluation metrics by run the MATLAB scripts in ./statistics/. For example, if you want to compute the average PSNR and SSIM on Rain100L, you can run the Rain100L.m.

Train

If you want to train the models, you can run the train_DFN.py and don't forget to change the args in this file. Or, you can run in the terminal by the following code:

python train_DFN.py --save_path path_to_save_trained_models --data_path path_of_the_training_dataset

Results

Average PSNR and SSIM values of DFN on five datasets are shown:

Datasets GMM DDN ResGuideNet JORDER-E SSIR PReNet BRN MSPFN DFN DFN+
Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 - 32.37/0.926 37.48/0.979 38.16/0.982 37.5839/0.9784 39.22/0.985 39.85/0.987
Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 - 22.47/0.716 29.62/0.901 30.73/0.916 30.8239/0.9055 31.40/0.926 31.81/0.930
RainLight - 31.66/0.922 - 39.13/0.985 32.20/0.929 37.93/0.983 38.86/0.985 39.7540/0.9862 39.53/0.987 40.12/0.988
RainHeavy - 22.03/0.713 - 29.21/0.891 22.17/0.719 29.36/0.903 30.27/0.917 30.7112/0.9129 31.07/0.927 31.47/0.931
Rain12 32.02/0.855 31.78/0.900 29.45/0.938 - 34.02/0.935 36.66/0.961 36.74/0.959 35.7780/0.9514 37.19/0.961 37.55/0.963

Image

References

[1]Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2]Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

[3]Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

Citation

If you find our research or code useful for you, please cite our paper:

@article{DING2021,
  title = {Distributed Feedback Network for Single-Image Deraining},
  journal = {Information Sciences},
  year = {2021},
  issn = {0020-0255},
  doi = {https://doi.org/10.1016/j.ins.2021.02.080},
  url = {https://www.sciencedirect.com/science/article/pii/S0020025521002371},
  author = {Jiajun Ding and Huanlei Guo and Hang Zhou and Jun Yu and Xiongxiong He and Bo Jiang}
}
Owner
Zhejiang University of Technology(ZJUT). Research: Image Enhencement, Few-shot Learning, GAN.
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022