Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

Related tags

Deep LearningDFN
Overview

DFN:Distributed Feedback Network for Single-Image Deraining

Abstract

Recently, deep convolutional neural networks have achieved great success for single-image deraining. However, affected by the intrinsic overlapping between rain streaks and background texture patterns, a majority of these methods tend to almost remove texture details in rain-free regions and lead to over-smoothing effects in the recovered background. To generate reasonable rain streak layers and improve the reconstruction quality of the background, we propose a distributed feedback network (DFN) in recurrent structure. A novel feedback block is designed to implement the feedback mechanism. In each feedback block, the hidden state with high-level information (output) will flow into the next iteration to correct the low-level representations (input). By stacking multiple feedback blocks, the proposed network where the hidden states are distributed can extract powerful high-level representations for rain streak layers. Curriculum learning is employed to connect the loss of each iteration and ensure that hidden states contain the notion of output. In addition, a self-ensemble strategy for rain removal task, which can retain the approximate vertical character of rain streaks, is explored to maximize the potential performance of the deraining model. Extensive experimental results demonstrated the superiority of the proposed method in comparison with other deraining methods.

Image

Requirements

*Python 3.7,Pytorch >= 0.4.0
*Requirements: opencv-python
*Platforms: Ubuntu 18.04,cuda-10.2
*MATLAB for calculating PSNR and SSIM

Datasets

DFN is trained and tested on five benchamark datasets: Rain100L[1],Rain100H[1],RainLight[2],RainHeavy[2] and Rain12[3]. It should be noted that DFN is trained on strict 1,254 images for Rain100H.

*Note:

(i) The authors of [1] updated the Rain100L and Rain100H, we call the new datasets as RainLight and RainHeavy here.

(ii) The Rain12 contains only 12 pairs of testing images, we use the model trained on Rain100L to test on Rain12.

Getting Started

Test

All the pre-trained models were placed in ./logs/.

Run the test_DFN.py to obtain the deraining images. Then, you can calculate the evaluation metrics by run the MATLAB scripts in ./statistics/. For example, if you want to compute the average PSNR and SSIM on Rain100L, you can run the Rain100L.m.

Train

If you want to train the models, you can run the train_DFN.py and don't forget to change the args in this file. Or, you can run in the terminal by the following code:

python train_DFN.py --save_path path_to_save_trained_models --data_path path_of_the_training_dataset

Results

Average PSNR and SSIM values of DFN on five datasets are shown:

Datasets GMM DDN ResGuideNet JORDER-E SSIR PReNet BRN MSPFN DFN DFN+
Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 - 32.37/0.926 37.48/0.979 38.16/0.982 37.5839/0.9784 39.22/0.985 39.85/0.987
Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 - 22.47/0.716 29.62/0.901 30.73/0.916 30.8239/0.9055 31.40/0.926 31.81/0.930
RainLight - 31.66/0.922 - 39.13/0.985 32.20/0.929 37.93/0.983 38.86/0.985 39.7540/0.9862 39.53/0.987 40.12/0.988
RainHeavy - 22.03/0.713 - 29.21/0.891 22.17/0.719 29.36/0.903 30.27/0.917 30.7112/0.9129 31.07/0.927 31.47/0.931
Rain12 32.02/0.855 31.78/0.900 29.45/0.938 - 34.02/0.935 36.66/0.961 36.74/0.959 35.7780/0.9514 37.19/0.961 37.55/0.963

Image

References

[1]Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2]Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

[3]Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

Citation

If you find our research or code useful for you, please cite our paper:

@article{DING2021,
  title = {Distributed Feedback Network for Single-Image Deraining},
  journal = {Information Sciences},
  year = {2021},
  issn = {0020-0255},
  doi = {https://doi.org/10.1016/j.ins.2021.02.080},
  url = {https://www.sciencedirect.com/science/article/pii/S0020025521002371},
  author = {Jiajun Ding and Huanlei Guo and Hang Zhou and Jun Yu and Xiongxiong He and Bo Jiang}
}
Owner
Zhejiang University of Technology(ZJUT). Research: Image Enhencement, Few-shot Learning, GAN.
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022