Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

Overview

HifiFace — Unofficial Pytorch Implementation

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

issueBadge starBadge repoSize lastCommit

This repository is an unofficial implementation of the face swapping model proposed by Wang et. al in their paper HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping. This implementation makes use of the Pytorch Lighting library, a light-weight wrapper for PyTorch.

HifiFace Overview

The task of face swapping applies the face and the identity of the source person to the head of the target.

The HifiFace architecture can be broken up into three primary structures. The 3D shape-aware identity extractor, the semantic facial fusion module, and an encoder-decoder structure. A high-level overview of the architecture can be seen in the image below.

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 2, pg. 3)

Changes from the original paper

Dataset

In the paper, the author used VGGFace2 and Asian-Celeb as the training dataset. Unfortunately, the Asian-Celeb dataset can only be accessed with a Baidu account, which we do not have. Thus, we only use VGGFace2 for our training dateset.

Model

The paper proposes two versions of HifiFace model based on the output image size: 256x256 and 512x512 (referred to as Ours-256 and Ours-512 in the paper). The 512x512 model uses an extra data preprocessing before training. In this open source project, we implement the 256x256 model. For the discriminator, the original paperuses the discriminator from StarGAN v2. Our implementation uses the multi-scale discriminator from SPADE.

Installation

Build Docker Image

git clone https://github.com/mindslab-ai/hififace 
cd hififace
git clone https://github.com/sicxu/Deep3DFaceRecon_pytorch && git clone https://github.com/NVlabs/nvdiffrast && git clone https://github.com/deepinsight/insightface.git
cp -r insightface/recognition/arcface_torch/ Deep3DFaceRecon_pytorch/models/
cp -r insightface/recognition/arcface_torch/ ./model/
rm -rf insightface
cp -rf 3DMM/* Deep3DFaceRecon_pytorch
mv Deep3DFaceRecon_pytorch model/
rm -rf 3DMM
docker build -t hififace:latent .
rm -rf nvdiffrast

This Dockerfile was inspired by @yuzhou164, this issue from Deep3DFaceRecon_pytorch.

Pre-Trained Model for Deep3DFace PyTorch

Follow the guideline in Prepare prerequisite models

Set up at ./mode/Deep3DFaceRecon_pytorch/

Pre-Trained Models for ArcFace

We used official Arcface per-trained pytorch implementation Download pre-trained checkpoint from onedrive (IResNet-100 trained on MS1MV3)

Download HifiFace Pre-Trained Model

google drive link trained on VGGFace2, 300K iterations

Training

Dataset & Preprocessing

Align & Crop

We aligned the face images with the landmark extracted by 3DDFA_V2. The code will be added.

Face Segmentation Map

After finishing aligning the face images, you need to get the face segmentation map for each face images. We used face segmentation model that PSFRGAN provides. You can use their code and pre-trained model.

Dataset Folder Structure

Each face image and the corresponding segmentation map should have the same name and the same relative path from the top-level directory.

face_image_dataset_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

face_segmentation_mask_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

Wandb

Wandb is a powerful tool to manage your model training. Please make a wandb account and a wandb project for training HifiFace with our training code.

Changing the Configuration

  • config/model.yaml

    • dataset.train.params.image_root: directory path to the training dataset images
    • dataset.train.params.parsing_root: directory path to the training dataset parsing images
    • dataset.validation.params.image_root: directory path to the validation dataset images
    • dataset.validation.params.parsing_root: directory path to the validation dataset parsing images
  • config/trainer.yaml

    • checkpoint.save_dir: directory where the checkpoints will be saved
    • wandb: fill out your wandb entity and project name

Run Docker Container

docker run -it --ipc host --gpus all -v /PATH_TO/hififace:/workspace -v /PATH_TO/DATASET/FOLDER:/DATA --name hififace hififace:latent

Run Training Code

python hififace_trainer.py --model_config config/model.yaml --train_config config/trainer.yaml -n hififace

Inference

Single Image

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result.png

All Posible Pairs of Images in Directory

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt  --input_directory_path asset/inference_sample --output_image_path ./result.png

Interpolation

# interpolates both the identity and the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_all.gif  --interpolation_all 

# interpolates only the identity.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_identity.gif  --interpolation_identity

# interpolates only the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_3d.gif  --interpolation_3d

Our Results

The results from our pre-trained model.

GIF interpolaiton results from Obama to Trump to Biden back to Obama. The left image interpolates both the identity and the 3D shape. The middle image interpolates only the identity. The right image interpolates only the 3D shape.

To-Do List

  • Pre-processing Code
  • Colab Notebook

License

BSD 3-Clause License.

Implementation Author

Changho Choi @ MINDs Lab, Inc. ([email protected])

Matthew B. Webster @ MINDs Lab, Inc. ([email protected])

Citations

@article{DBLP:journals/corr/abs-2106-09965,
  author    = {Yuhan Wang and
               Xu Chen and
               Junwei Zhu and
               Wenqing Chu and
               Ying Tai and
               Chengjie Wang and
               Jilin Li and
               Yongjian Wu and
               Feiyue Huang and
               Rongrong Ji},
  title     = {HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping},
  journal   = {CoRR},
  volume    = {abs/2106.09965},
  year      = {2021}
}
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022