The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Overview

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy

https://openreview.net/forum?id=VBZJ_3tz-t

Abstract: Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization (PaI) can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to match the accuracy of a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning.

This code base is created by Shiwei Liu [email protected] during his Ph.D. at Eindhoven University of Technology.

Requirements

Python 3.6, PyTorch v1.5.1, and CUDA v10.2.

How to Run Experiments

[Training module] The training module is controlled by the following arguments:

  • --sparse - Enable sparse mode (remove this if want to train dense model)
  • --fix - Fix the sparse pattern during training (remove this if want to with dynamic sparse training)
  • --sparse-init - Type of sparse initialization. Choose from: uniform, uniform_plus, ERK, ERK_plus, ER, snip (snip ratio), GraSP (GraSP ratio)
  • --model (str) - cifar_resnet_A_B, where A is the depths and B is the width, e.g., cifar_resnet_20_32
  • --density (float) - density level (default 0.05)

CIFAR-10/100 Experiments

To train ResNet with various depths on CIFAR10/100:

for model in cifar_resnet_20 cifar_resnet_32 cifar_resnet_44 cifar_resnet_56 cifar_resnet_110 
do
    python main.py --sparse --seed 17 --sparse_init ERK --fix --lr 0.1 --density 0.05 --model $model --data cifar10 --epoch 160
done

To train ResNet with various depths on CIFAR10/100:

for model in cifar_resnet_20_8 cifar_resnet_20_16 cifar_resnet_20_24 
do
    python main.py --sparse --seed 17 --sparse_init ERK --fix --lr 0.1 --density 0.05 --model $model --data cifar10 --epoch 160
done

ImageNet Experiments

To train WideResNet50_2 on ImageNet with ERK_plus:

cd ImageNet
python $1multiproc.py --nproc_per_node 4 $1main.py --sparse_init ERK_plus --fc_density 1.0 --fix --fp16 --master_port 5556 -j 10 -p 500 --arch WideResNet50_2 -c fanin --label-smoothing 0.1 -b 192 --lr 0.4 --warmup 5 --epochs 100 --density 0.2 --static-loss-scale 256 $2 ../../../../../../data1/datasets/imagenet2012/ --save save/

Citation

if you find this repo is helpful, please cite

@inproceedings{
liu2022the,
title={The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training},
author={Shiwei Liu and Tianlong Chen and Xiaohan Chen and Li Shen and Decebal Constantin Mocanu and Zhangyang Wang and Mykola Pechenizkiy},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=VBZJ_3tz-t}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022