Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Related tags

Deep Learninghydra
Overview

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Paper

Overview

Hydra is a state-of-the-art fuzzing framework for file systems. It provides building blocks for file system fuzzing, including multi-dimensional input mutators, feedback engines, a libOS-based executor, and a bug reproducer with test case minimizer. Developers only need to focus on writing (or bringing in) a checker which defines the core logic for finding the types of bugs of their own interests. Along with the framework, this repository includes our in-house developed crash consistency checker (SymC3), with which 11 new crash consistency bugs were revealed from ext4, Btrfs, F2FS, and from two verified file systems: FSCQ and Yxv6.

Contents

  • General code base

    • src/combined: Hydra input mutator
    • src/lkl/tools/lkl/{FS}-combined-consistency: Hydra LibOS-based Executor (will be downloaded and compiled during setup)
  • Checkers

    • src/emulator: Hydra's in-house crash consistency checker, SymC3

Setup

1. All setup should be done under src

$ cd src

2. Install dependencies

./dep.sh

3. Compile for each file system

$ make build-btrfs-imgwrp
  • We can do the same for other file systems:
$ make build-ext4-imgwrp
$ make build-f2fs-imgwrp
$ make build-xfs-imgwrp
  • (Skip if you want to test the latest kernel) To reproduce bugs presented in the SOSP'19 paper, do the following to back-port LKL to kernel 4.16.
$ cd lkl (pwd: proj_root/src/lkl) # assuming that you are in the src directory
$ make mrproper
$ git pull
$ git checkout v4.16-backport
$ ./compile -t btrfs
$ cd .. (pwd: proj_root/src)

4. Set up environments

$ sudo ./prepare_fuzzing.sh
$ ./prepare_env.sh

5. Run fuzzing (single / multiple instance)

  • Single instance
$ ./run.py -t [fstype] -c [cpu_id] -l [tmpfs_id] -g [fuzz_group]

-t: choose from btrfs, f2fs, ext4, xfs
-c: cpu id to run this fuzzer instance
-l: tmpfs id to store logs (choose one from /tmp/mosbench/tmpfs-separate/)
-g: specify group id for parallel fuzzing, default: 0

e.g., ./run.py -t btrfs -c 4 -l 10 -g 1
Runs btrfs fuzzer, and pins the instance to Core #4.
Logs will be accumulated under /tmp/mosbench/tmpfs-separate/10/log/ .
  • You can also run multiple fuzzers in parallel by doing:
[Terminal 1] ./run.py -t btrfs -c 1 -l 10 -g 1
[Terminal 2] ./run.py -t btrfs -c 2 -l 10 -g 1
[Terminal 3] ./run.py -t btrfs -c 3 -l 10 -g 1
[Terminal 4] ./run.py -t btrfs -c 4 -l 10 -g 1
// all btrfs bug logs will be under /tmp/mosbench/tmpfs-separate/10/log/

[Terminal 5] ./run.py -t f2fs -c 5 -l 11 -g 2
[Terminal 6] ./run.py -t f2fs -c 6 -l 11 -g 2
[Terminal 7] ./run.py -t f2fs -c 7 -l 11 -g 2
[Terminal 8] ./run.py -t f2fs -c 8 -l 11 -g 2
// all f2fs bug logs will be under /tmp/mosbench/tmpfs-separate/11/log/

6. Important note

It is highly encouraged that you use separate input, output, log directories for each file system, unless you are running fuzzers in parallel. If you reuse the same directories from previous testings of other file systems, it won't work properly.

7. Experiments

Please refer to EXPERIMENTS.md for detailed experiment information.

Contacts

Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022