Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Overview

Pano3D

A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation

made-with-python Maintaner Maintaner

Streamlit Demo YouTube Video Views

Pano3D Intro

Pano3D is a new benchmark for depth estimation from spherical panoramas. We generate a dataset (using GibsonV2) and provide baselines for holistic performance assessment, offering:

  1. Primary and secondary traits metrics:
    • Direct depth performance:
      • (w)RMSE
      • (w)RMSLE
      • AbsRel
      • SqRel
      • (w)Relative accuracy (\delta) @ {1.05, 1.1, 1.25, 1.252, 1.253 }
    • Boundary discontinuity preservation:
      • Precision @ {0.25, 0.5, 1.0}m
      • Recall @ {0.25, 0.5, 1.0}m
      • Depth boundary errors of accuracy and completeness
    • Surface smoothness:
      • RMSEo
      • Relative accuracy (\alpha) @ {11.25o, 22.5o, 30o}
  2. Out-of-distribution & Zero-shot cross dataset transfer:
    • Different depth distribution test set
    • Varying scene context test set
    • Shifted camera domain test set

By disentangling generalization and assessing all depth properties, Pano3D aspires to drive progress benchmarking for 360o depth estimation.

Using Pano3D to search for a solid baseline results in an acknowledgement of exploiting complementary error terms, adding encoder-decoder skip connections and using photometric augmentations.

TODO

  • Web Demo
  • Data Download
  • Loader & Splits
  • Models Weights Download
  • Model Serve Code
  • Model Hub Code
  • Metrics Code

Demo

A publicly hosted demo of the baseline models can be found here. Using the web app, it is possible to upload a panorama and download a 3D reconstructed mesh of the scene using the derived depth map.

Note that due to the external host's caching issues, it might be necessary to refresh your browser's cache in between runs to update the 3D models.

Data

Download

To download the data, follow the instructions at vcl3d.github.io/Pano3D/download/.

Please note that getting access to the data download links is a two step process as the dataset is a derivative and compliance with the original dataset's terms and usage agreements is required. Therefore:

  1. You first need to fill in this Google Form.
  2. And, then, you need to perform an access request at each one of the Zenodo repositories (depending on which dataset partition you need):

After both these steps are completed, you will soon receive the download links for each dataset partition.

Loader

Splits

Models

Download

Inference

Serve

Metrics

Direct

Boundary

Smoothness

Results

Owner
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Computer Vision Lab in CERTH-ITI
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022