Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Overview

Matern Gaussian Processes on Graphs

This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemented for graphs. Easily integrated with the rest of gpflow functionality, it allows one to run GP regression and classification problems on graphs. See examples notebooks and docstrings for how-to guides/documentation.

Installation

Minimal installation is performed by typing

pip install -e .

in your terminal inside the cloned repo directory.

To run example notebooks, install the dependencies with

pip install -e .[examples]

On Windows, we recommend using Windows Subsystem for Linux (WSL).

Library usage

A rough outline of how to use the library is as follows:

>>> from graph_matern.kernels.graph_matern_kernel import GraphMaternKernel
>>> laplacian = nx.laplacian_matrix(G)  # G is a networkx Graph
>>> eigenvalues, eigenvectors = tf.linalg.eigh(laplacian)  # only should be done once-per-graph
>>> kernel = GraphMaternKernel((eigenvectors, eigenvalues))
>>> model = gpflow.models.GPR(data=data, kernel=kernel)

Note that one is not constrained to use GPR as a model, check out our example notebooks for a more detailed how-to.

Examples

Notebook with topic classification for citation networks on the CORA dataset [1] is

jupyter notebook examples/classification.ipynb

Notebook with primitive regression on PEMS data [2] is

jupyter notebook examples/regression.ipynb

The data in examples/data is third-party, and only provided in the repo to facilitate running the examples.

Citation

@inproceedings{borovitskiy2021matern,
      title={Matern Gaussian Processes on Graphs}, 
      author={Viacheslav Borovitskiy and Iskander Azangulov and Alexander Terenin and Peter Mostowsky and Marc Peter Deisenroth and Nicolas Durrande},
      booktitle={International Conference on Artificial Intelligence and Statistics},
      year={2021},
      organization={PMLR}
}
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022