A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

Overview

python_graphs

This package is for computing graph representations of Python programs for machine learning applications. It includes the following modules:

  • control_flow For computing control flow graphs statically from Python programs.
  • data_flow For computing data flow analyses of Python programs.
  • program_graph For computing graphs statically to represent arbitrary Python programs or functions.
  • cyclomatic_complexity For computing the cyclomatic complexity of a Python function.

Installation

To install python_graphs with pip, run: pip install python_graphs.

To install python_graphs from source, run: python setup.py develop.

Common Tasks

Generate a control flow graph from a function fn:

from python_graphs import control_flow
graph = control_flow.get_control_flow_graph(fn)

Generate a program graph from a function fn:

from python_graphs import program_graph
graph = program_graph.get_program_graph(fn)

Compute the cyclomatic complexity of a function fn:

from python_graphs import control_flow
from python_graphs import cyclomatic_complexity
graph = control_flow.get_control_flow_graph(fn)
value = cyclomatic_complexity.cyclomatic_complexity(graph)

This is not an officially supported Google product.

Comments
  • Can you provide a quick start example?

    Can you provide a quick start example?

    Super cool project! Love the idea and think it has a lot of potential.

    it would be awesome to have an examples/ directory containing some sample usages - maybe even just plotting the graphs with networkX and matplotlib.

    question 
    opened by LukeWood 5
  • How do we solve the error when installing python-graphs?

    How do we solve the error when installing python-graphs?

    Hello,

    I encountered an error "fatal error: 'graphviz/cgraph.h' file not found" when trying to install python_graphs. How do I solve this issue, please? Thanks.

    question 
    opened by fraolBatole 2
  • How to generate a Holistic Data Flow Graph for a given Function ?

    How to generate a Holistic Data Flow Graph for a given Function ?

    @dbieber, Thanks for this awesome work.

    Question

    control_flow.get_control_flow_graph, returns a Control Flow Graph for a given Function Object. There is one data_flow class, Is there a way to generate a complete Data Flow Graph given a Function Object?

    Thanks.

    opened by reshinthadithyan 2
  • Rename fn to get_test_components to eliminate extra test from logs

    Rename fn to get_test_components to eliminate extra test from logs

    The function test_components was being registered as an unsupported test, when in reality it was meant as a helper function for tests. Renaming resolves this.

    opened by dbieber 0
  • get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    • Adds get_start_control_flow_node to ControlFlowGraph
    • Adds next_from_end to ControlFlowNode
    • Uses labels (e.g. '' and '' strings) to indicate these special nodes
    • Support keyword only arguments without defaults
    • Add non-interrupting edges from raise statements
    • Bump version number
    opened by dbieber 0
  • Separate branch kinds

    Separate branch kinds

    Splits "branches" into branches, except_branches, and reraise_branches.

    branches are you're usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code. Also marks except expressions and finally blocks as branch points.

    An "except A:"'s branch decision is whether the current exception matches A. At the end of a finally block, the branch decision is whether an exception is currently being raised.

    This includes https://github.com/google-research/python-graphs/pull/3: Splits "branches" into branches, except_branches, and reraise_branches.

    branches are your usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • KeyError when trying to get program_graph

    KeyError when trying to get program_graph

    When I try to create a program graph, I encounter a KeyError. If I remove all the and and or expressions from the python file (buggy.py) the error does not occur.

    This is how I use the library:

    graph = program_graph.get_program_graph(code)
    program_graph_graphviz.render(graph, path='source.png')
    

    where code is simply the code in the attached file buggy.py.txt.

    I have also attached the log file log.txt.

    buggy.py.txt

    log.txt

    More information: python 3.9.5 commit head=44c15b92197f374c3550353ff827997ef1c1d857 gast 0.5.3

    opened by ppashakhanloo 1
Releases(v1.2.3)
  • v1.2.3(Oct 7, 2021)

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches (#6)

    * Adds get_start_control_flow_node to ControlFlowGraph
    * Adds next_from_end to ControlFlowNode
    * Uses labels (e.g. '<exit>' and '<raise>' strings) to indicate these special nodes
    * Support keyword only arguments without defaults
    * Add non-interrupting edges from raise statements
    * Bump version number
    
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Oct 5, 2021)

    Introduce get_branches API on control flow nodes. Previously the new branch types (except_branches and reraise_branches) were only accessible on basic blocks, not on individual nodes.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Oct 5, 2021)

    1. Adds a module frame to catch raises in top-level code.
    2. Also marks except expressions and finally blocks as branch points.

    The branch kinds are: branches, except_branches, and reraise_branches.

    • branches are your usual branch decisions: ifs, fors, and whiles.
    • except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not
    • reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(May 7, 2021)

  • v1.0.0(Apr 12, 2021)

    v1.0.0

    Initial public release of the python_graphs library.

    Core features:

    • control flow graph generation
    • data flow analyses
    • program graph construction
    • cyclomatic complexity calculation
    • a solid test suite for all the above
    • visualizations using graphviz for each of the graph representations
    Source code(tar.gz)
    Source code(zip)
Owner
Google Research
Google Research
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022