Classify music genre from a 10 second sound stream using a Neural Network.

Overview

MusicGenreClassification

MusicGenreClassification

Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University.

Featured in Medium.

Abstract

This paper discuss the task of classifying the music genre of a sound sample.

Introduction

When I decided to work on the field of sound processing I thought that genre classification is a parallel problem to the image classification. To my surprise I did not found too many works in deep learning that tackled this exact problem. One paper that did tackle this classification problem is Tao Feng’s paper [1] from the university of Illinois. I did learned a lot from this paper, but honestly, they results the paper presented were not impressive.

So I had to look on other, related but not exact papers. A very influential paper was Deep content-based music recommendation [2] This paper is about content-base music recommendation using deep learning techniques. The way they got the dataset, and the preprocessing they had done to the sound had really enlightened my implementation. Also, this paper was mentioned lately on “Spotify” blog [3]. Spotify recruited a deep learning intern that based on the above work implemented a music recommendation engine. His simple yet very efficient network made me think that Tao’s RBM was not the best approach and there for my implementation included a CNN instead like in the Spotify blog. One very important note is that Tao’s work published result only for 2,3 and 4 classes classification. Obviously he got really good result for 2 classes classification, but the more classes he tried to classify the poorer the result he got. My work classify the whole 10 classes challenge, a much more difficult task. A sub task for this project was to learn a new SDK for deep learning, I have been waiting for an opportunity to learn Google’s new TensorFlow[4]. This project is implemented in Python and the Machine Learning part is using TensorFlow.

The Dataset

Getting the dataset might be the most time consuming part of this work. Working with music is a big pain, every file is usually a couple of MBs, there are variety of qualities and parameters of recording (Number of frequencies, Bits per second, etc…). But the biggest pain is copyrighting, there are no legit famous songs dataset as they would cost money. Tao’s paper based on a dataset called GTZAN[5]. This dataset is quit small (100 songs per genre X 10 genres = overall 1,000 songs), and the copyright permission is questionable. This is from my perspective one of the reasons that held him from getting better results. So, I looked up for generating more data to learn from. Eventually I found MSD[6] dataset (Million Song Dataset). It is a freely-available collection of audio features and metadata for a million contemporary popular music tracks. Around 280 GB of pure metadata. There is a project on top of MSD called tagtraum[7] which classify MSD songs into genres. The problem now was to get the sound itself, here is where I got a little creative. I found that one of the tags every song have in the dataset is an id from a provider called 7Digital[8]. 7Digital is a SaaS provider for music application, it basically let you stream music for money. I signed up to 7Digital as a developer and after their approval i could access their API. Still any song stream costs money, But I found out that they are enabling to preview random 30 seconds of a song to the user before paying for them. This is more than enough for my deep learning task, So I wrote “previewDownloader.py” that downloads for every song in the MSD dataset a 30 sec preview. Unfortunately I had only my laptop for this mission, so I had to settle with only 1% of the dataset (around 2.8GB).

The genres I am classifying are:

  1. blues
  2. classical
  3. country
  4. disco
  5. hiphop
  6. jazz
  7. metal
  8. pop
  9. reggae
    10.rock

Music genre popularity

Preprocessing the data

Having a big data set isn't enough, in oppose to image tasks I cannot work straight on the raw sound sample, a quick calculation: 30 seconds × 22050 sample/sec- ond = 661500 length of vector, which would be heavy load for a convention machine learning method.

Following all the papers I read and researching a little on acoustic analysis, It is quit obvious that the industry is using Mel-frequency cepstral coefficients (MFCC) as the feature vector for the sound sample, I used librosa[9] implementation.

MFCCs are derived as follows:

  1. Take the Fourier transform of (a windowed excerpt of) a signal.
  2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
  3. Take the logs of the powers at each of the mel frequencies.
  4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
  5. The MFCCs are the amplitudes of the resulting spectrum.

I had tried several window size and stride values, the best result I got was for size of 100ms and a stride of 40ms.

One more point was that Tao’s paper used MFCC features (step 5) while Sander used strait mel-frequencies (step 2).

MEL ppower over time

I tried both approaches and found out that I got extremely better results using just the mel-frequencies, but the trade-off was the training time of-course. Before continue to building a network I wanted to visualise the preprocessed data set, I implemented this through the t-SNE[10] algorithm.Below you can see the t-SNE graph for MFCC (step 5) and Mel-Frequencies (step 2):

t-SNE MFCC samples as genres

t-SNE mel-spectogram samples as genres

The Graph

After seeing the results Tao and Sander reached I decided to go with a convolu- tional neural network implementation. The network receive a 599 vector of mea-frequen- cy beans, each containing 128 frequencies which describe their window. The network consist with 3 hidden layers and between them I am doing a max pooling. Finally a fully connected layer and than softmax to end up with a 10 dimensional vector for our ten genre classes

Nural Network

I did implement another network for MFCC feature instead of mel-frequencies, the only differences are in the sizes (13 frequencies per window instead of 128).

Visualisation of various filters (from Sander’s paper):

Filters visualization

• Filter 14 seems to pick up vibrato singing. • Filter 242 picks up some kind of ringing ambience. • Filter 250 picks up vocal thirds, i.e. multiple singers singing the same thing, but the notes are a major third (4 semitones) apart. • Filter 253 picks up various types of bass drum sounds.

Results

As I explained in the introduction, the papers I based my work on did not solve the exact problem I did, for example Tao’s paper published results for classifying 2,3 and 4 classes (Genres).

Tao Feng's results

I did looked for benchmarks outside the deep learning field and I found a paper titled “A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING” [11]. This paper benchmark a very similar task to mine, the genres it classifies: Blues, Electronic, Jazz, Pop, HipHop, Rock, Folk, Alternative, Funk.

Benchmark results

My results:

My results

Code

Documentation

• previewDownloader.py: USAGE: python previewDownloader.py [path to MSD data] This script iterate over all ‘.h5’ in a directory and download a 30 seconds sample from 7digital.

• preproccess.py: USAGE: python preproccess.py [path to MSD mp3 data] This script pre-processing the sound files. Calculating MFCC for a sliding window and saving the result in a ‘.pp’ file.

• formatInput.py: USAGE: python formatInput.py [path to MSD pp data] The script iterates over all ‘.pp’ files and generates ‘data’ and ‘labels’ that will be used as an input to the NN. Moreover, the script output a t-SNE graph at the end.

• train.py: USAGE: python train.py This script builds the neural network and feeds it with ‘data’ and ‘labels’. When it is done it will save ‘model.final’.

Complete Installation

References

[1] Tao Feng, Deep learning for music genre classification, University of Illinois. https://courses.engr.illinois.edu/ece544na/fa2014/Tao_Feng.pdf [2]Aar̈onvandenOord,SanderDieleman,BenjaminSchrauwen,Deepcontent- based music recommendation. http://papers.nips.cc/paper/5004-deep-content-based- music-recommendation.pdf [3] SANDER DIELEMAN, RECOMMENDING MUSIC ON SPOTIFY WITH DEEP LEARNING, AUGUST 05, 2014. http://benanne.github.io/2014/08/05/spotify-cnns.html [4] https://www.tensorflow.org [5] GTZAN Genre Collection. http://marsyasweb.appspot.com/download/ data_sets/ [6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011. http:// labrosa.ee.columbia.edu/millionsong/ [7] Hendrik Schreiber. Improving genre annotations for the million song dataset. In Proceedings of the 16th International Conference on Music Information Retrieval (IS- MIR), pages 241-247, 2015. http://www.tagtraum.com/msd_genre_datasets.html [8] https://www.7digital.com [9] https://github.com/bmcfee/librosa [10] http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html [11] Helge Homburg, Ingo Mierswa, Bu l̈ent Mo l̈ler, Katharina Morik and Michael Wurst, A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING, University of Dortmund, AI Unit. http://sfb876.tu-dortmund.de/PublicPublicationFiles/ homburg_etal_2005a.pdf

Author

Matan Lachmish a.k.a The Big Fat Ninja The Big Fat Ninja
https://thebigfatninja.xyz

attribution

Icon made by Freepik from www.flaticon.com

License

MusicGenreClassification is available under the MIT license. See the LICENSE file for more info.

Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022