SNIPS: Solving Noisy Inverse Problems Stochastically

Overview

SNIPS: Solving Noisy Inverse Problems Stochastically

This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problems Stochastically.

by Bahjat Kawar, Gregory Vaksman, and Michael Elad, Computer Science Department, Technion.

Running Experiments

Dependencies

Run the following conda line to install all necessary python packages for our code and set up the snips environment.

conda env create -f environment.yml

The environment includes cudatoolkit=11.0. You may change that depending on your hardware.

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [-i IMAGE_FOLDER]
               [-n NUM_VARIATIONS] [-s SIGMA_0] [--degradation DEGRADATION]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  -n NUM_VARIATIONS, --num_variations NUM_VARIATIONS
                        Number of variations to produce
  -s SIGMA_0, --sigma_0 SIGMA_0
                        Noise std to add to observation
  --degradation DEGRADATION
                        Degradation: inp | deblur_uni | deblur_gauss | sr2 |
                        sr4 | cs4 | cs8 | cs16

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
│   ├── celeba # all CelebA files
│   └── lsun # all LSUN files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      └── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
├── image_samples # contains generated samples
│   └── <i>
│       ├── stochastic_variation.png # samples generated from checkpoint_x.pth, including original, degraded, mean, and std   
│       ├── results.pt # the pytorch tensor corresponding to stochastic_variation.png
│       └── y_0.pt # the pytorch tensor containing the input y of SNIPS

Downloading data

You can download the aligned and cropped CelebA files from their official source here. The LSUN files can be downloaded using this script. For our purposes, only the validation sets of LSUN bedroom and tower need to be downloaded.

Running SNIPS

If we want to run SNIPS on CelebA for the problem of super resolution by 2, with added noise of standard deviation 0.1, and obtain 3 variations, we can run the following

python main.py -i celeba --config celeba.yml --doc celeba -n 3 --degradation sr2 --sigma_0 0.1

Samples will be saved in /image_samples/celeba .

The available degradations are: Inpainting (inp), Uniform deblurring (deblur_uni), Gaussian deblurring (deblur_gauss), Super resolution by 2 (sr2) or by 4 (sr4), Compressive sensing by 4 (cs4), 8 (cs8), or 16 (cs16). The sigma_0 can be any value from 0 to 1.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

These checkpoint files are provided as-is from the authors of NCSNv2. You can use the CelebA, LSUN-bedroom, and LSUN-tower datasets' pretrained checkpoints. We assume the --exp argument is set to exp.

Acknowledgement

This repo is largely based on the NCSNv2 repo, and uses modified code from this repo for implementing the blurring matrix.

References

If you find the code/idea useful for your research, please consider citing

@article{kawar2021snips,
  title={SNIPS: Solving Noisy Inverse Problems Stochastically},
  author={Kawar, Bahjat and Vaksman, Gregory and Elad, Michael},
  journal={arXiv preprint arXiv:2105.14951},
  year={2021}
}
Owner
Bahjat Kawar
Bahjat Kawar
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022