Open-source implementation of Google Vizier for hyper parameters tuning

Overview

Advisor

Introduction

Advisor is the hyper parameters tuning system for black box optimization.

It is the open-source implementation of Google Vizier with these features.

  • Easy to use with API, SDK, WEB and CLI
  • Support abstractions of Study and Trial
  • Included search and early stop algorithms
  • Recommend parameters with trained model
  • Same programming interfaces as Google Vizier
  • Command-line tool just like Microsoft NNI.

Supported Algorithms

  • Grid Search
  • Random Search
  • Bayesian Optimization
  • TPE(Hyperopt)
  • Random Search(Hyperopt)
  • Simulate Anneal(Hyperopt)
  • Quasi Random(Chocolate)
  • Grid Search(Chocolate)
  • Random Search(Chocolate)
  • Bayes(Chocolate)
  • CMAES(Chocolate)
  • MOCMAES(Chocolate)
  • SMAC Algorithm
  • Bayesian Optimization(Skopt)
  • Early Stop First Trial Algorithm
  • Early Stop Descending Algorithm
  • Performance Curve Stop Algorithm

Quick Start

It is easy to setup advisor service in local machine.

pip install advisor

advisor_admin server start

Then go to http://127.0.0.1:8000 in the browser and submit tuning jobs.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

advisor run -f ./advisor_client/examples/python_function/config.json

advisor study describe -s demo

Advisor Server

Run server with official package.

advisor_admin server start

Or run with official docker image.

docker run -d -p 8000:8000 tobegit3hub/advisor

Or run with docker-compose.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/docker-compose.yml

docker-compose up -d

Or run in Kubernetes cluster.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/kubernetes_advisor.yaml

kubectl create -f ./kubernetes_advisor.yaml

Or run from scratch with source code.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

pip install -r ./requirements.txt

./manage.py migrate

./manage.py runserver 0.0.0.0:8000

Advisor Client

Install with pip or use docker container.

pip install advisor

docker run -it --net=host tobegit3hub/advisor bash

Use the command-line tool.

export ADVISOR_ENDPOINT="http://127.0.0.1:8000"

advisor study list

advisor study describe -s "demo"

advisor trial list --study_name "demo"

Use admin tool to start/stop server.

advisor_admin server start

advisor_admin server stop

Use the Python SDK.

client = AdvisorClient()

# Create the study
study_configuration = {
        "goal": "MAXIMIZE",
        "params": [
                {
                        "parameterName": "hidden1",
                        "type": "INTEGER",
                        "minValue": 40,
                        "maxValue": 400,
                        "scalingType": "LINEAR"
                }
        ]
}
study = client.create_study("demo", study_configuration)

# Get suggested trials
trials = client.get_suggestions(study, 3)

# Complete the trial
trial = trials[0]
trial_metrics = 1.0
client.complete_trial(trial, trial_metrics)

Please checkout examples for more usage.

Configuration

Study configuration describe the search space of parameters. It supports four types and here is the example.

{
  "goal": "MAXIMIZE",
  "randomInitTrials": 1,
  "maxTrials": 5,
  "maxParallelTrials": 1,
  "params": [
    {
      "parameterName": "hidden1",
      "type": "INTEGER",
      "minValue": 1,
      "maxValue": 10,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "learning_rate",
      "type": "DOUBLE",
      "minValue": 0.01,
      "maxValue": 0.5,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "hidden2",
      "type": "DISCRETE",
      "feasiblePoints": "8, 16, 32, 64",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "optimizer",
      "type": "CATEGORICAL",
      "feasiblePoints": "sgd, adagrad, adam, ftrl",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "batch_normalization",
      "type": "CATEGORICAL",
      "feasiblePoints": "true, false",
      "scalingType": "LINEAR"
    }
  ]
}

Here is the configuration file in JSON format for advisor run.

{
  "name": "demo",
  "algorithm": "BayesianOptimization",
  "trialNumber": 10,
  "concurrency": 1,
  "path": "./advisor_client/examples/python_function/",
  "command": "./min_function.py",
  "search_space": {
      "goal": "MINIMIZE",
      "randomInitTrials": 3,
      "params": [
          {
              "parameterName": "x",
              "type": "DOUBLE",
              "minValue": -10.0,
              "maxValue": 10.0,
              "scalingType": "LINEAR"
          }
      ]
  }
}

Or use the equivalent configuration file in YAML format.

name: "demo"
algorithm: "BayesianOptimization"
trialNumber: 10
path: "./advisor_client/examples/python_function/"
command: "./min_function.py"
search_space:
  goal: "MINIMIZE"
  randomInitTrials: 3
  params:
    - parameterName: "x"
      type: "DOUBLE"
      minValue: -10.0
      maxValue: 10.0

Screenshots

List all the studies and create/delete the studies easily.

study_list.png

List the detail of study and all the related trials.

study_detail.png

List all the trials and create/delete the trials easily.

trial_list.png

List the detail of trial and all the related metrics.

trial_detail.png

Development

You can edit the source code and test without re-deploying the server and client.

git clone [email protected]:tobegit3hub/advisor.git

cd ./advisor/advisor_client/

python ./setup.py develop

export PYTHONPATH="/Library/Python/2.7/site-packages/:$PYTHONPATH"
Owner
tobe
Work in @Xiaomi, @UnitedStack and @4Paradigm for Storage(HBase), IaaS(OpenStack, Kubernetes), Big data(Spark, Flink) and Machine Learning(TensorFlow).
tobe
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022