Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

Overview

README

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques. A dataset containing signals collected from 60 LoRa devices is also provided. The detailed collection settings for the different sub-datasets can be found in Section Dataset Introduction. The section of Code Example introduces the usage of some important functions, for more detailed usage please read the code comments carefully.

Citation

If the part of the dataset/codes contributes to your project, please cite:

[1] G. Shen, J. Zhang, A. Marshall, and J. Cavallaro.   “Towards Scalable and Channel-Robust Radio Frequency 
Fingerprint Identification for LoRa,” IEEE Trans. Inf. Forensics Security, 2022.
@article{shen2021towards,
  title={Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa},
  author={Shen, Guanxiong and Zhang, Junqing and Marshall, Alan and Cavallaro, Joseph},
  journal={arXiv preprint arXiv:2107.02867},
  year={2021}
}

Dataset Introduction

Experimental Devices

There are 60 commercial-off-the-shelf LoRa devices (LoPy4, mbed SX1261 shields, FiPy, Dragino SX1276 shields) included in the experiments. The table below provides more details of them.

Device index Model Chipset
1 - 45 Pycom LoPy4 SX1276
46 - 50 mbed SX1261 shield SX1261
51 - 55 Pycom FiPy SX1272
56 - 60 Dragino SX1276 shield SX1276

All the LoRa packets are captured by a USRP N210 software-defined radio (SDR).

Dataset Structure

The dataset consists of 26 sub-datasets, each of which is an HDF5 file. Each HDF5 file contains a number of LoRa signals (IQ samples of preamble part) and corresponding device labels. As HDF5 does not support complex numbers, we concatenate the signal I-brach (real part) and Q-branch (imaginary part) and then save it. Figure below shows the structure of the raw HDF5 dataset.

Training Datasets

The following table summarizes the basic information of each training dataset. All the training datasets were collected in a residential room with a line of sight (LOS) between the transmitter and receiver.

Training dataset path Devices Number of packets per device Augmentation
Dataset/Train/dataset_training_aug.h5 1 - 30 1,000 Yes, both multipath & Doppler
Dataset/Train/dataset_training_aug_0hz.h5 1 - 30 1,000 Yes, only multipath ($f_d$ = 0 Hz)
Dataset/Train/dataset_training_no_aug.h5 1 - 30 500 No

Test/Enrollment Datasets

The test/enrollment datasets were collected in a residential room, an office building and a meeting room. The floor plan is provided in the following figure:

The following table summarizes the basic information of each test/enrollment dataset.

Test dataset path Devices Number of packets per device Collection env.
Dataset/Test/dataset_seen_devices.h5 1 - 30 400 Residential room, LOS, stationary
Dataset/Test/dataset_rogue.h5 41 - 45 200 Residential room, LOS, stationary
Dataset/Test/dataset_residential.h5 31 - 40 400 Residential room, LOS, stationary
Dataset/Test/dataset_other_device_type.h5 46 - 60 400 Residential room, LOS, stationary
Dataset/Test/channel_problem/A.h5 31 - 40 200 Location A, LOS, stationary
Dataset/Test/channel_problem/B.h5 31 - 40 200 Location B, LOS, stationary
Dataset/Test/channel_problem/C.h5 31 - 40 200 Location C, LOS, stationary
Dataset/Test/channel_problem/D.h5 31 - 40 200 Location D, NLOS, stationary
Dataset/Test/channel_problem/E.h5 31 - 40 200 Location E, NLOS, stationary
Dataset/Test/channel_problem/F.h5 31 - 40 200 Location F, NLOS, stationary
Dataset/Test/channel_problem/B_walk.h5 31 - 40 200 Location B, LOS, object moving
Dataset/Test/channel_problem/F_walk.h5 31 - 40 200 Location F, NLOS, object moving
Dataset/Test/channel_problem/moving_office.h5 31 - 40 200 LOS, mobile in the office
Dataset/Test/channel_problem/moving_meeting_room.h5 31 - 40 200 NLOS, mobile in the meeting room
Dataset/Test/channel_problem/B_antenna.h5 31 - 40 200 Location B, LOS, stationary, parallel antenna
Dataset/Test/channel_problem/F_antenna.h5 31 - 40 200 Location F, NLOS, stationary, parallel antenna

Code Example

1. Before Start

a) Install Required Packages

Please find the 'requirement.txt' file to install the required packages.

b) Download Dataset

Please downlaod the dataset and put it in the project folder. The download link is https://ieee-dataport.org/open-access/lorarffidataset.

c) Operating System

This project is built entirely on the Windows operating system. There may be unexpected issues on other operating systems.

2. Quick Start

After installing packages of correct versions and downloading the datasets, you can directly run the 'main.py' file for RFF extractor training/rogue device detection/classification tasks. You can change the variable 'run_for' in line 364 to specify which task to perform. For example, the program will train an RFF extractor and save it if you set the 'run_for' as 'Train'.

3. Load Datasets

It is recommended to use our provided 'LoadDataset' class function to load the raw HDF5 files. You need to specify the dataset path, device range, and packet range before running it. Below is an example of loading an HDF5 file:

import numpy as np
from dataset_preparation import LoadDataset

LoadDatasetObj = LoadDataset()
data, label = LoadDatasetObj.load_iq_samples(file_path = './dataset/Train/dataset_training_aug.h5', 
                                             dev_range = np.arange(30,40, dtype = int), 
                                             pkt_range= np.arange(0,100, dtype = int))

This example will extract ($10\times100=1000$) LoRa signals in total. More specifically, it will extract 100 packets from each device in range. The function 'load_iq_samples' returns two arrays, data and label. The data is a complex128 array of size (1000,8192), and label is an int32 array of size (1000,1). The figure below illustrates the structures of the two arrays.

Note that the loaded labels start from 0 but not 1 to adapt to deep learning. In other words, device 1 is labelled 0 and device 2 is labelled 1 and so forth.

4. Generate Channel Independent Spectrograms

The channel independent spectrogram helps mitigate the channel effects in the received signal and make LoRa-RFFI systems more robust to channel variations. We provide functions to convert an array of IQ samples to channel independent spectrograms. The following code block gives an example:

from dataset_preparation import ChannelIndSpectrogram

ChannelIndSpectrogramObj = ChannelIndSpectrogram()
# The input 'data' is the loaded IQ samples in the last example.
ch_ind_spec = ChannelIndSpectrogramObj.channel_ind_spectrogram(data)

The returned 'ch_ind_spec' is an array of size (1000,102,62,1). Note that the size of the array is affected by the STFT parameters, which can be changed in code. Please refer to our paper or code comments to find the detailed derivation of channel independent spectrograms.

5. Train an RFF Extractor

The function 'train_feature_extractor()' can train an RFF extractor using triplet loss.

import numpy as np
from deep_learning_models import TripletNet, identity_loss
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.optimizers import RMSprop

feature_extractor = train_feature_extractor()

You can also specify the training dataset path, training device range, training packets range and SNR range during augmentation. Otherwise, the default values will be used. Following is an example:

feature_extractor = train_feature_extractor(file_path = './dataset/Train/dataset_training_aug.h5', 
                                            dev_range = np.arange(0,10, dtype = int), 
                                            pkt_range = np.arange(0,1000, dtype = int), 
                                            snr_range = np.arange(20,80)):

6. Rogue Device Detection

The function 'test_rogue_device_detection()' performs the rogue device detection task. You MUST specify the RFF extractor path before running the function. See the example below:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc

fpr, tpr, roc_auc, eer = test_rogue_device_detection('./models/Extractor_1.h5')

This function returns false posive rate (FPR), true positive rate (TPR), area under the curve (AUC) and equal error rate (EER). These are all important evaluation metrics in rogue device detection task. Please refer to our paper for their definitions.

The following lines of code plot the ROC curve using the returned results:

import matplotlib.pyplot as plt

# Plot the ROC curves.
plt.figure(figsize=(4.8, 2.8))
plt.xlim(-0.01, 1.02)
plt.ylim(-0.01, 1.02)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Extractor 1, AUC = ' 
         + str(round(roc_auc,3)) + ', EER = ' + str(round(eer,3)), C='r')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc=4)
# plt.savefig('roc_curve.pdf',bbox_inches='tight')
plt.show()    

7. Classification

The function 'test_classification()' performs the classification task. You MUST specify the paths of enrollment dataset, test dataset and RFF extractor before running the function. Here is a simple example:

from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

pred_label, true_label, acc = test_classification(file_path_enrol = 
                                                  './dataset/Test/dataset_residential.h5',
                                                  file_path_clf = 
                                                  './dataset/Test/channel_problem/A.h5',
                                                  feature_extractor_name = 
                                                  './models/Extractor_1.h5')

This example returns predicted labels, true labels and the overall classification accuracy. We can further plot a confusion matrix to see fine-grained classification results:

import matplotlib.pyplot as plt
import seaborn as sns

# Plot the confusion matrix.
conf_mat = confusion_matrix(true_label, pred_label)
classes = test_dev_range + 1 # xticklabels

plt.figure()
sns.heatmap(conf_mat, annot=True, 
            fmt = 'd', cmap='Blues',
            cbar = False,
            xticklabels=classes, 
            yticklabels=classes)
plt.xlabel('Predicted label', fontsize = 20)
plt.ylabel('True label', fontsize = 20)

License

The dataset and code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Contact

Please contact the following email addresses if you have any questions:
[email protected]
[email protected]

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021