3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

Overview

3DIAS_Pytorch

This repository contains the official code to reproduce the results from the paper:

3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

[project page] [arXiv]

Installation

Clone this repository into any place you want.

git clone https://github.com/myavartanoo/3DIAS_PyTorch.git
cd 3DIAS_Pytorch

Dependencies

  • Python 3.8.5
  • PyTorch 1.7.1
  • numpy
  • Pillow
  • open3d
  • PyMCubes (or build this repo)

Install dependencies in a conda environment.

conda create -n 3dias python=3.8
conda activate 3dias

pip install -r requirements.txt

Pretrained model

Download config.json and checkpoint-epoch#.pth from below links and save in weigths folder. Note that we get Multi-class weight by training with all-classes and Single-class weight by training with each class

Multi-class

Dropbox or Mirror

Single-class

To download all the single-class weigths, run

sh download_weights.sh

Or you can get the weights one-by-one.

airplane / bench / cabinet / car / chair / display / lamp / speaker / rifle / sofa / table / phone / vessel

Quickstart (Demo)

You can now test our demo code on the provided input images in the input folder. (Or you can use other images in shapeNet.) To this end, simply run,

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" 

    

The result meshes are saved in output folder. (We've created a few example meshes)

  • total.ply is a whole mesh
  • parts_.ply are meshes for parts To see the mesh, you can use meshlab

If you want to visualize meshes with open3d, run with --visualize option as below.

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize

    

The preprocessed dataset, training, testing code will be distributed soon.

Citation

If you find our code or paper useful, please consider citing

@inproceedings{3DIAS,
    title = {3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces},
    author = {Mohsen Yavartanoo, JaeYoung Chung, Reyhaneh Neshatavar, Kyoung Mu Lee},
    booktitle = {Proceedings IEEE Conf. on International Conference on Computer Vision (ICCV)},
    year = {2021}
}
Owner
Mohsen Yavartanoo
I am a master student at Seoul National University. My research interest is, Computer Vision, Deep Learning, 3D Objection Recognition, 3D Object Detection.
Mohsen Yavartanoo
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022