[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

Overview

MobileSal

IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection

This repository contains full training & testing code, and pretrained saliency maps. We have achieved competitive performance on the RGB-D salient object detection task with a speed of 450fps.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[PDF]

Requirements

PyTorch

  • Python 3.6+
  • PyTorch >=0.4.1, OpenCV-Python
  • Tested on PyTorch 1.7.1

Jittor

  • Python 3.7+
  • Jittor, OpenCV-Python
  • Tested on Jittor 1.3.1

For Jittor users, we create a branch jittor. So please run the following command first:

git checkout jittor

Installing

Please prepare the required packages.

pip install -r envs/requirements.txt

Data Preparing

Before training/testing our network, please download the training data:

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./data/ folder. Then, the ./datasets/ folder should contain six folders: NJU2K/, NLPR/, STERE/, SSD/, SIP/, DUT-RGBD/, representing NJU2K, NLPR, STEREO, SSD, SIP, DUTLF-D datasets, respectively.

Train

It is very simple to train our network. We have prepared a script to run the training step:

bash ./tools/train.sh

Pretrained Models

As in our paper, we train our model on the NJU2K_NLPR training set, and test our model on NJU2K_test, NLPR_test, STEREO, SIP, and SSD datasets. For DUTLF-D, we train our model on DUTLF-D training set and evaluate on its testing test.

(Default) Trained on NJU2K_NLPR training set:

(Custom) Training on DUTLF-D training set:

Download them and put them into the pretrained/ folder.

Test / Evaluation / Results

After preparing the pretrained models, it is also very simple to test our network:

bash ./tools/test.sh

The scripts will automatically generate saliency maps on the maps/ directory.

Pretrained Saliency maps

For covenience, we provide the pretrained saliency maps on several datasets as below:

TODO

  1. Release the pretrained models and saliency maps on COME15K dataset.
  2. Release the ONNX model for real-world applications.
  3. Add results with the P2T transformer backbone.

Other Tips

  • I encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

License

The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for NonCommercial use only.

Citations

If you are using the code/model/data provided here in a publication, please consider citing our work:

@ARTICLE{wu2021mobilesal,
  author={Wu, Yu-Huan and Liu, Yun and Xu, Jun and Bian, Jia-Wang and Gu, Yu-Chao and Cheng, Ming-Ming},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={MobileSal: Extremely Efficient RGB-D Salient Object Detection}, 
  year={2021},
  doi={10.1109/TPAMI.2021.3134684}
}

Acknowlogdement

This repository is built under the help of the following five projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022