Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Overview

Adversarial Long-Tail

This repository contains the PyTorch implementation of the paper:

Adversarial Robustness under Long-Tailed Distribution, CVPR 2021 (Oral)

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, Dahua Lin

Real-world data usually exhibits a long-tailed distribution, while previous works on adversarial robustness mainly focus on balanced datasets. To push adversarial robustness towards more realistic scenarios, in this work, we investigate the adversarial vulnerability as well as defense under long-tailed distributions. We perform a systematic study on existing Long-Tailed recognition (LT) methods in conjunction with the Adversarial Training framework (AT) and obtain several valuable observations. We then propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant classifier and data re-balancing via both margin engineering at the training stage and boundary adjustment during inference.

This repository includes:

  • Code for the LT methods applied with AT framework in our study.
  • Code and pre-trained models for our method.

Environment

Datasets

We use the CIFAR-10-LT and CIFAR-100-LT datasets. The data will be automatically downloaded and converted.

Usage

Baseline

To train and evaluate a baseline model, run the following commands:

# Vanilla FC for CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml -a ALL

# Vanilla FC for CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml -a ALL

Here -a ALL denotes that we evaluate five attacks including FGSM, PGD, MIM, CW, and AutoAttack.

Long-tailed recognition methods with adversarial training framework

We provide scripts for the long-tailed recognition methods applied with adversarial training framework as reported in our study. We mainly provide config files for CIFAR-10-LT. For CIFAR-100-LT, simply set imbalance_ratio=0.1, dataset=CIFAR100, and num_classes=100 in the config file, and don't forget to change the model_dir (working directory to save the log files and checkpoints) and model_path (checkpoint to evaluate by test.py).

Methods applied at training time.

Methods applied at training stage include class-aware re-sampling and different kinds of cost-sensitive learning.

Train the models with the corresponding config files:

# Vanilla Cos
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos.yaml

# Class-aware margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_LDAM.yaml

# Cosine with margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos_HE.yaml

# Class-aware temperature
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CDT.yaml

# Class-aware bias
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_logitadjust.yaml

# Hard-exmaple mining
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_focal.yaml

# Re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-whole.yaml

# Re-weighting (based on effective number of samples)
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CB.yaml

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied via fine-tuning.

Fine-tuning based methods propose to re-train or fine-tune the classifier via data re-balancing techniques with the backbone frozen.

Train a baseline model first, and then set the load_model in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run fine-tuning by:

# One-epoch re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-fine.yaml

# One-epoch re-weighting
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rw-fine.yaml 

# Learnable classifier scale
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_lws.yaml 

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied at inference time.

Methods applied at the inference stage based on a vanilla trained model would usually conduct a different forwarding process from the training stage to address shifted data distributions from train-set to test-set.

Similarly, train a baseline model first, and this time set the model_path in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run evaluation with a certain inference-time strategy by:

# Classifier re-scaling
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_CDT.yaml -a ALL

# Classifier normalization
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_norm.yaml -a ALL

# Class-aware bias
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_logitadjust.yaml -a ALL

Sometimes a baseline model is not applicable, since a cosine classifier is used with some statistics recorded during training. For example, to apply the method below, train the model by:

# Feature disentangling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml 

Change the posthoc setting in the config file as True, and evaluate the model by:

python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml -a ALL

Attention: methods that involve loss temperatures or classifier scaling operations could be at the risk of producing unexpectedly higher robustness accuracy for PGD and MIM attacks, which is NOT reliable as analyzed in Sec.3.3 of our paper. This phenomenon sometimes could be observed at validation time during training. As a result, for a more reliable evaluation, it is essential to keep a similar level of logit scales during both training and inference stage.

Our method

The config files used for training and inference stage could be different, denoted by <config-prefix>_train.yaml and <config-prefix>_eval.yaml, respectively.

Training stage

Train the models by running:

# CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_train.yaml
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_train.yaml

# CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_train.yaml
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_train.yaml

Attention: notice that by the end of the training stage, the evaluation results with the original training config file would miss the re-balancing strategy applied at inference state, thus we should change to the evaluation config file to complete the process.

Inference stage

Evaluate the models by running:

# CIFAR-10-LT
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_eval.yaml -a ALL

# CIFAR-100-LT
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_eval.yaml -a ALL

Pre-trained models

We provide the pre-trained models for our methods above. Download and extract them to the ./checkpoints directory, and produce the results with eval.yaml in the corresponding folders by running:

python test.py checkpoints/<folder-name-of-the-pretrained-model>/eval.yaml -a ALL

License and Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021advlt,
 author =  {Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin},
 title = {Adversarial Robustness under Long-Tailed Distribution},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
 }

Acknowledgement

We thank the authors for the following repositories for code reference: TRADES, AutoAttack, ADT, Class-Balanced Loss, LDAM-DRW, OLTR, AT-HE, Classifier-Balancing, mma_training, TDE, etc.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022