Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Overview

Adversarial Long-Tail

This repository contains the PyTorch implementation of the paper:

Adversarial Robustness under Long-Tailed Distribution, CVPR 2021 (Oral)

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, Dahua Lin

Real-world data usually exhibits a long-tailed distribution, while previous works on adversarial robustness mainly focus on balanced datasets. To push adversarial robustness towards more realistic scenarios, in this work, we investigate the adversarial vulnerability as well as defense under long-tailed distributions. We perform a systematic study on existing Long-Tailed recognition (LT) methods in conjunction with the Adversarial Training framework (AT) and obtain several valuable observations. We then propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant classifier and data re-balancing via both margin engineering at the training stage and boundary adjustment during inference.

This repository includes:

  • Code for the LT methods applied with AT framework in our study.
  • Code and pre-trained models for our method.

Environment

Datasets

We use the CIFAR-10-LT and CIFAR-100-LT datasets. The data will be automatically downloaded and converted.

Usage

Baseline

To train and evaluate a baseline model, run the following commands:

# Vanilla FC for CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml -a ALL

# Vanilla FC for CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml -a ALL

Here -a ALL denotes that we evaluate five attacks including FGSM, PGD, MIM, CW, and AutoAttack.

Long-tailed recognition methods with adversarial training framework

We provide scripts for the long-tailed recognition methods applied with adversarial training framework as reported in our study. We mainly provide config files for CIFAR-10-LT. For CIFAR-100-LT, simply set imbalance_ratio=0.1, dataset=CIFAR100, and num_classes=100 in the config file, and don't forget to change the model_dir (working directory to save the log files and checkpoints) and model_path (checkpoint to evaluate by test.py).

Methods applied at training time.

Methods applied at training stage include class-aware re-sampling and different kinds of cost-sensitive learning.

Train the models with the corresponding config files:

# Vanilla Cos
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos.yaml

# Class-aware margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_LDAM.yaml

# Cosine with margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos_HE.yaml

# Class-aware temperature
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CDT.yaml

# Class-aware bias
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_logitadjust.yaml

# Hard-exmaple mining
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_focal.yaml

# Re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-whole.yaml

# Re-weighting (based on effective number of samples)
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CB.yaml

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied via fine-tuning.

Fine-tuning based methods propose to re-train or fine-tune the classifier via data re-balancing techniques with the backbone frozen.

Train a baseline model first, and then set the load_model in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run fine-tuning by:

# One-epoch re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-fine.yaml

# One-epoch re-weighting
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rw-fine.yaml 

# Learnable classifier scale
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_lws.yaml 

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied at inference time.

Methods applied at the inference stage based on a vanilla trained model would usually conduct a different forwarding process from the training stage to address shifted data distributions from train-set to test-set.

Similarly, train a baseline model first, and this time set the model_path in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run evaluation with a certain inference-time strategy by:

# Classifier re-scaling
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_CDT.yaml -a ALL

# Classifier normalization
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_norm.yaml -a ALL

# Class-aware bias
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_logitadjust.yaml -a ALL

Sometimes a baseline model is not applicable, since a cosine classifier is used with some statistics recorded during training. For example, to apply the method below, train the model by:

# Feature disentangling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml 

Change the posthoc setting in the config file as True, and evaluate the model by:

python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml -a ALL

Attention: methods that involve loss temperatures or classifier scaling operations could be at the risk of producing unexpectedly higher robustness accuracy for PGD and MIM attacks, which is NOT reliable as analyzed in Sec.3.3 of our paper. This phenomenon sometimes could be observed at validation time during training. As a result, for a more reliable evaluation, it is essential to keep a similar level of logit scales during both training and inference stage.

Our method

The config files used for training and inference stage could be different, denoted by <config-prefix>_train.yaml and <config-prefix>_eval.yaml, respectively.

Training stage

Train the models by running:

# CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_train.yaml
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_train.yaml

# CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_train.yaml
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_train.yaml

Attention: notice that by the end of the training stage, the evaluation results with the original training config file would miss the re-balancing strategy applied at inference state, thus we should change to the evaluation config file to complete the process.

Inference stage

Evaluate the models by running:

# CIFAR-10-LT
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_eval.yaml -a ALL

# CIFAR-100-LT
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_eval.yaml -a ALL

Pre-trained models

We provide the pre-trained models for our methods above. Download and extract them to the ./checkpoints directory, and produce the results with eval.yaml in the corresponding folders by running:

python test.py checkpoints/<folder-name-of-the-pretrained-model>/eval.yaml -a ALL

License and Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021advlt,
 author =  {Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin},
 title = {Adversarial Robustness under Long-Tailed Distribution},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
 }

Acknowledgement

We thank the authors for the following repositories for code reference: TRADES, AutoAttack, ADT, Class-Balanced Loss, LDAM-DRW, OLTR, AT-HE, Classifier-Balancing, mma_training, TDE, etc.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022