[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

Overview

ShapeInversion

Paper

Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D Shape Completion through GAN Inversion" CVPR 2021

Results

Setup

Environment

conda create -n shapeinversion python=3.7
conda activate shapeinversion
pip install torch==1.2.0 torchvision==0.4.0
pip install plyfile h5py Ninja matplotlib scipy

Datasets

Our work is extensively evaluated with several existing datasets. For the virtual scan benchmark (derived from ShapeNet), we use CRN's dataset. We would suggest you to get started with this dataset. For ball-holed partial shapes, we refer to PF-Net. For PartNet dataset, we download from MPC. For real scans processed from KITTI, MatterPort3D, and ScanNet, we get from pcl2pcl.

Get started

We provide pretrained tree-GAN models for you to directly start with the inversion stage. You can download them from Google drive or Baidu cloud (password: w1n9), and put them to the pretrained_models folder.

Shape completion

You can specify other class and other datasets, like real scans provided by pcl2pcl.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode completion \
--mask_type k_mask \
--save_inversion_path ./saved_results/CRN_chair \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Evaluating completion results

For datasets with GT, such as the above CRN_chair:

python eval_completion.py \
--eval_with_GT true \
--saved_results_path saved_results/CRN_chair

For datasets without GT:

python eval_completion.py \
--eval_with_GT false \
--saved_results_path <your_results_on_KITTI>

Giving multiple valid outputs

ShapeInversion is able to provide multiple valid complete shapes, especially when extreme incompleteness that causes ambiguity.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode diversity \
--save_inversion_path ./saved_results/CRN_chair_diversity \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Shape jittering

ShapeInversion is able to change an object into other plausible shapes of different geometries.

python trainer.py \
--dataset CRN \
--class_choice plane \
--save_inversion_path ./saved_results/CRN_plane_jittering  \
--ckpt_load pretrained_models/plane.pt \
--inversion_mode jittering \
--iterations 30 30 30 30 \
--dataset_path <your_dataset_directory>

Shape morphing

ShapeInversion enables morphing between two shapes.

python trainer.py \
--dataset CRN \
--class_choice chair \
--save_inversion_path ./saved_results/CRN_chair_morphing  \
--ckpt_load pretrained_models/chair.pt \
--inversion_mode morphing \
--dataset_path <your_dataset_directory>

Pretraining

You can also pretrain tree-GAN by yourself.

python pretrain_treegan.py \
--split train \
--class_choice chair \
--FPD_path ./evaluation/pre_statistics_chair.npz \
--ckpt_path ./pretrain_checkpoints/chair \
--knn_loss True \
--dataset_path <your_dataset_directory>

NOTE:

  • The inversion stage supports distributed training by simply adding --dist. It is tested on slurm as well.
  • The hyperparameters provided may not be optimal, feel free to tune them.
  • Smaller batch size for pretraining is totally fine.

Acknowledgement

The code is in part built on tree-GAN and DGP. Besides, CD and EMD are borrowed from ChamferDistancePytorch and MSN respectively, both of which are included in the external folder for convenience.

Citation

@inproceedings{zhang2021unsupervised,
    title = {Unsupervised 3D Shape Completion through GAN Inversion},
    author = {Zhang, Junzhe and Chen, Xinyi and Cai, Zhongang and Pan, Liang and Zhao, Haiyu 
    and Yi, Shuai and Yeo, Chai Kiat and Dai, Bo and Loy, Chen Change},
    booktitle = {CVPR},
    year = {2021}}
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022