RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

Related tags

Deep LearningRAAN
Overview

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

Anonymous submission

Abstract

3D object detection from LiDAR data for autonomous driving has been making remarkable strides in recent years. Among the state-of-the-art methodologies, encoding point clouds into a bird's-eye view (BEV) has been demonstrated to be both effective and efficient. Different from perspective views, BEV preserves rich spatial and distance information between objects; and while farther objects of the same type do not appear smaller in the BEV, they contain sparser point cloud features. This fact weakens BEV feature extraction using shared-weight convolutional neural networks. In order to address this challenge, we propose Range-Aware Attention Network (RAANet), which extracts more powerful BEV features and generates superior 3D object detections. The range-aware attention (RAA) convolutions significantly improve feature extraction for near as well as far objects. Moreover, we propose a novel auxiliary loss for density estimation to further enhance the detection accuracy of RAANet for occluded objects. It is worth to note that our proposed RAA convolution is lightweight and compatible to be integrated into any CNN architecture used for the BEV detection. Extensive experiments on the nuScenes dataset demonstrate that our proposed approach outperforms the state-of-the-art methods for LiDAR-based 3D object detection, with real-time inference speed of 16 Hz for the full version and 22 Hz for the lite version. The code is publicly available at an anonymous Github repository https://github.com/anonymous0522/RAAN.

Installation

The code base of this work is forked from CenterPoint. The environment and dataset setups are inditity.

  1. The CUDA and Pytorch version that is used for this work:
'CUDA==10.0',
'torch==1.1.0',
'CUDNN==7.5.0'

Warning: We tried CUDA11.0+Torch1.7.1 on RTX3090, the AP performance is significantly lower than the aforementioned environment setup.

  1. Installation
git clone https://github.com/anonymous0522/RAAN.git
cd RAAN

Then follow the setup of CenterPoint: INSTALL

  1. Data Preperation

Currently, we train and evaluate our method on NuScenes dataset.

Please setup the dataset by NUSC from CenterPoint.

  1. Examples of Training and Evaluation

Distributed Train:

python -m torch.distributed.launch —nproc_per_node=NUM_OF_GPU tools/train.py PATH_TO_CONFIG —work_dir PATH_TO_WORK_DIR

Normal Train:

python  tools/train.py PATH_TO_CONFIG —work_dir PATH_TO_WORK_DIR

Load and fine tune:

python3 tools/train.py PATH_TO_CONFIG --work_dir PATH_TO_WORK_DIR --load_from PATH_TO_MODEL

Test with test set:

python tools/dist_test.py PATH_TO_CONFIG —work_dir TPATH_TO_WORK_DIR --checkpoint PATH_TO_MODEL --testset —speed_test

With validation set:

python tools/dist_test.py PATH_TO_CONFIG —work_dir TPATH_TO_WORK_DIR --checkpoint PATH_TO_MODEL —speed_test

With distributed val:

python -m torch.distributed.launch —nproc_per_node=NUM_OF_GPU tools/dist_test.py PATH_TO_CONFIG —work_dir TPATH_TO_WORK_DIR --checkpoint PATH_TO_MODEL --testset —speed_test

Main Results

3D Object detection on nuScenes

CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
wlad 2 Dec 19, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021