DaCeML - Machine learning powered by data-centric parallel programming.

Overview

CPU CI GPU CI codecov Documentation Status

DaCeML

Machine learning powered by data-centric parallel programming.

This project adds PyTorch and ONNX model loading support to DaCe, and adds ONNX operator library nodes to the SDFG IR. With access to DaCe's rich transformation library and productive development environment, DaCeML can generate highly efficient implementations that can be executed on CPUs, GPUs and FPGAs.

The white box approach allows us to see computation at all levels of granularity: from coarse operators, to kernel implementations, and even down to every scalar operation and memory access.

IR visual example

Read more: Library Nodes

Integration

Converting PyTorch modules is as easy as adding a decorator...

@dace_module
class Model(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 4, kernel_size)
        self.conv2 = nn.Conv2d(4, 4, kernel_size)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

... and ONNX models can also be directly imported using the model loader:

model = onnx.load(model_path)
dace_model = ONNXModel("mymodel", model)

Read more: PyTorch Integration and Importing ONNX models.

Training

DaCeML modules support training using a symbolic automatic differentiation engine:

import torch.nn.functional as F
from daceml.pytorch import dace_module

@dace_module(backward=True)
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 120)
        self.fc2 = nn.Linear(120, 32)
        self.fc3 = nn.Linear(32, 10)
        self.ls = nn.LogSoftmax(dim=-1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.ls(x)
        return x

x = torch.randn(8, 784)
y = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long)

model = Net()

criterion = nn.NLLLoss()
prediction = model(x)
loss = criterion(prediction, y)
# gradients can flow through model!
loss.backward()

Read more: Automatic Differentiation.

Library Nodes

DaCeML extends the DaCe IR with machine learning operators. The added nodes perform computation as specificed by the ONNX specification. DaCeML leverages high performance kernels from ONNXRuntime, as well as pure SDFG implementations that are introspectable and transformable with data centric transformations.

The nodes can be used from the DaCe python frontend.

import dace
import daceml.onnx as donnx
import numpy as np

@dace.program
def conv_program(X_arr: dace.float32[5, 3, 10, 10],
                 W_arr: dace.float32[16, 3, 3, 3]):
    output = dace.define_local([5, 16, 4, 4], dace.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output

X = np.random.rand(5, 3, 10, 10).astype(np.float32)
W = np.random.rand(16, 3, 3, 3).astype(np.float32)

result = conv_program(X_arr=X, W_arr=W)

Setup

The easiest way to get started is to run

make install

This will setup DaCeML in a newly created virtual environment.

For more detailed instructions, including ONNXRuntime installation, see Installation.

Development

Common development tasks are automated using the Makefile. See Development for more information.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023