DaCeML - Machine learning powered by data-centric parallel programming.

Overview

CPU CI GPU CI codecov Documentation Status

DaCeML

Machine learning powered by data-centric parallel programming.

This project adds PyTorch and ONNX model loading support to DaCe, and adds ONNX operator library nodes to the SDFG IR. With access to DaCe's rich transformation library and productive development environment, DaCeML can generate highly efficient implementations that can be executed on CPUs, GPUs and FPGAs.

The white box approach allows us to see computation at all levels of granularity: from coarse operators, to kernel implementations, and even down to every scalar operation and memory access.

IR visual example

Read more: Library Nodes

Integration

Converting PyTorch modules is as easy as adding a decorator...

@dace_module
class Model(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 4, kernel_size)
        self.conv2 = nn.Conv2d(4, 4, kernel_size)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

... and ONNX models can also be directly imported using the model loader:

model = onnx.load(model_path)
dace_model = ONNXModel("mymodel", model)

Read more: PyTorch Integration and Importing ONNX models.

Training

DaCeML modules support training using a symbolic automatic differentiation engine:

import torch.nn.functional as F
from daceml.pytorch import dace_module

@dace_module(backward=True)
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 120)
        self.fc2 = nn.Linear(120, 32)
        self.fc3 = nn.Linear(32, 10)
        self.ls = nn.LogSoftmax(dim=-1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.ls(x)
        return x

x = torch.randn(8, 784)
y = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long)

model = Net()

criterion = nn.NLLLoss()
prediction = model(x)
loss = criterion(prediction, y)
# gradients can flow through model!
loss.backward()

Read more: Automatic Differentiation.

Library Nodes

DaCeML extends the DaCe IR with machine learning operators. The added nodes perform computation as specificed by the ONNX specification. DaCeML leverages high performance kernels from ONNXRuntime, as well as pure SDFG implementations that are introspectable and transformable with data centric transformations.

The nodes can be used from the DaCe python frontend.

import dace
import daceml.onnx as donnx
import numpy as np

@dace.program
def conv_program(X_arr: dace.float32[5, 3, 10, 10],
                 W_arr: dace.float32[16, 3, 3, 3]):
    output = dace.define_local([5, 16, 4, 4], dace.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output

X = np.random.rand(5, 3, 10, 10).astype(np.float32)
W = np.random.rand(16, 3, 3, 3).astype(np.float32)

result = conv_program(X_arr=X, W_arr=W)

Setup

The easiest way to get started is to run

make install

This will setup DaCeML in a newly created virtual environment.

For more detailed instructions, including ONNXRuntime installation, see Installation.

Development

Common development tasks are automated using the Makefile. See Development for more information.

nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022