DaCeML - Machine learning powered by data-centric parallel programming.

Overview

CPU CI GPU CI codecov Documentation Status

DaCeML

Machine learning powered by data-centric parallel programming.

This project adds PyTorch and ONNX model loading support to DaCe, and adds ONNX operator library nodes to the SDFG IR. With access to DaCe's rich transformation library and productive development environment, DaCeML can generate highly efficient implementations that can be executed on CPUs, GPUs and FPGAs.

The white box approach allows us to see computation at all levels of granularity: from coarse operators, to kernel implementations, and even down to every scalar operation and memory access.

IR visual example

Read more: Library Nodes

Integration

Converting PyTorch modules is as easy as adding a decorator...

@dace_module
class Model(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 4, kernel_size)
        self.conv2 = nn.Conv2d(4, 4, kernel_size)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

... and ONNX models can also be directly imported using the model loader:

model = onnx.load(model_path)
dace_model = ONNXModel("mymodel", model)

Read more: PyTorch Integration and Importing ONNX models.

Training

DaCeML modules support training using a symbolic automatic differentiation engine:

import torch.nn.functional as F
from daceml.pytorch import dace_module

@dace_module(backward=True)
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 120)
        self.fc2 = nn.Linear(120, 32)
        self.fc3 = nn.Linear(32, 10)
        self.ls = nn.LogSoftmax(dim=-1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.ls(x)
        return x

x = torch.randn(8, 784)
y = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long)

model = Net()

criterion = nn.NLLLoss()
prediction = model(x)
loss = criterion(prediction, y)
# gradients can flow through model!
loss.backward()

Read more: Automatic Differentiation.

Library Nodes

DaCeML extends the DaCe IR with machine learning operators. The added nodes perform computation as specificed by the ONNX specification. DaCeML leverages high performance kernels from ONNXRuntime, as well as pure SDFG implementations that are introspectable and transformable with data centric transformations.

The nodes can be used from the DaCe python frontend.

import dace
import daceml.onnx as donnx
import numpy as np

@dace.program
def conv_program(X_arr: dace.float32[5, 3, 10, 10],
                 W_arr: dace.float32[16, 3, 3, 3]):
    output = dace.define_local([5, 16, 4, 4], dace.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output

X = np.random.rand(5, 3, 10, 10).astype(np.float32)
W = np.random.rand(16, 3, 3, 3).astype(np.float32)

result = conv_program(X_arr=X, W_arr=W)

Setup

The easiest way to get started is to run

make install

This will setup DaCeML in a newly created virtual environment.

For more detailed instructions, including ONNXRuntime installation, see Installation.

Development

Common development tasks are automated using the Makefile. See Development for more information.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023