Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

Overview

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET

Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

DATA SET STORY:

  • This dataset was originally taken from the StatLib library at Carnegie Mellon University.
  • This is part of the data that was used in the 1988 ASA Graphics Section Poster Session.
  • The salary data were originally from Sports Illustrated, April 20, 1987.
  • The 1986 and career statistics were obtained from The 1987 Baseball Encyclopedia Update published by Collier Books, Macmillan Publishing Company, New York.

ATTRIBUTES: A data frame with 322 observations of major league players on the following 20 variables.

  • AtBat: Number of times at bat in 1986-1987 season
  • Hits: Number of hits in 1986-1987 season
  • HmRun: Number of home runs in 1986-1987 season
  • Runs: Number of runs in 1986-1987 season
  • RBI: Number of runs batted in 1986-1987 season
  • Walks: Number of walks in 1986-1987 season
  • Years: Number of years in the major leagues
  • CAtBat: Number of times at bat during his career
  • CHits: Number of hits during his career
  • CHmRun: Number of home runs during his career
  • CRuns: Number of runs during his career
  • CRBI: Number of runs batted in during his career
  • CWalks: Number of walks during his career
  • League: A factor with levels A and N indicating player's league at the end of 1986
  • Division: A factor with levels E and W indicating player's division at the end of 1986
  • PutOuts: Number of put outs in 1986-1987 season
  • Assists: Number of assists in 1986-1987 season
  • Errors: Number of errors in 1986-1987 season
  • Salary: 1996-1987 annual salary on opening day in thousands of dollars
  • NewLeague: A factor with levels A and N indicating player's league at the beginning of 1987
Owner
Pinar Oner
Data Engineer | Project Coordinator
Pinar Oner
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022