A model to predict steering torque fully end-to-end

Overview

torque_model

The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering fully end to end.

The input is the current wheel angle and future wheel angle (among other things), and the net's output is what torque the human was applying at the time to reach that future state smoothly and confidently. This bypasses the need to manually tune a PID, LQR, or INDI controller, while gaining human-like control over the steering wheel.

Needs to be cloned into an openpilot repo to take advantage of its tools.

The problem

As talked about in great detail and with a simple thought experiment in comma.ai's blog post here about end to end lateral planning, the same concept of behavioral cloning not being able to recover from disturbances applies here.

Behavior cloning and lack of perturbations

The way we generate automatically-labeled training data for a model that predicts how to control a steering wheel is rather simple; any time a human is driving we just take the current (t0s) and future (t0.3s) steering wheel angles and then just have the model predict whatever torque the human was applying at t0s to get us there.

This seems to work great, and the validation loss also seems to be really low! However, when you actually try to drive on this model or put it in a simulator, you can quickly see that any small disturbances (like wind, road camber, etc) quickly lead to a feedback loop or just plain inability to correct back to our desired steering angle.

This is due to the automatically-generated training and validation data containing only samples where the current and future (desired during runtime) steering wheel angles are very close together (just a couple degrees), as a symptom of only using data where the future angle is just fractions of a second away.

To fully realize the problem, think about what would happen if you wanted this model to predict what a human would actuate if the steering wheel is centered, but our desired angle is something like 90 degrees. As the model has never seen a difference of angles higher than just a couple of degrees, it either outputs a very small torque value, or just nonsense, as this input is vastly outside of its training distribution.

The solution

The solution talked about in the blog post above is to use a very simple simulator to warp the input video to be offset left or right, and then tell the model what path the human actually drove. A similar approach can also be taken here, where we generate random samples with an arbitrary steering wheel angle error, and then use a simple model of steering wheel torque, like a PF (proportional-feedforward) controller as the output to predict.

For the example above where we start at 0 degrees and want to reach 90 degrees, we can inject samples into the training data where we have that exact situation and then have the output be what a simple PF controller would output. Then during runtime in the car, when the model corrects for this arbitrary high angle error situation, the current and desired steering wheel angles become much closer together, and the model can then use its knowledge of how humans control under these circumstances.

The future

The current model described and implememted here is non-temporal, meaning the model has no knowledge of the past, where the steering wheel was, and inferring where it's heading. While the input data includes the steering angle rate, there's a lot of information missing it could use to improve its predictions, as well as a model bug where including the angle rate during runtime causes very smoothed and laggy predictions (probably due to the generated synthetic samples not taking any angle rate into account).

Ideally the model has some knowledge of the past, however this means we need an accurate simulator to train the model with perturbations added, so it can correct for disturbances in the real world.

Owner
Shane Smiskol
I mess around with self driving cars, neural networks, and real world data!
Shane Smiskol
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022