A Multipurpose Library for Synthetic Time Series Generation in Python

Overview

Build Status codecov

TimeSynth

Multipurpose Library for Synthetic Time Series

Please cite as:
J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library for Synthetic Time Series in Python,” 2017. [Online]. Available: http://github.com/TimeSynth/TimeSynth

TimeSynth is an open source library for generating synthetic time series for model testing. The library can generate regular and irregular time series. The architecture allows the user to match different signals with different architectures allowing a vast array of signals to be generated. The available signals and noise types are listed below.

N.B. We only support Python 3.6+ at this time.

Signal Types

  • Harmonic functions(sin, cos or custom functions)
  • Gaussian processes with different kernels
    • Constant
    • Squared exponential
    • Exponential
    • Rational quadratic
    • Linear
    • Matern
    • Periodic
  • Pseudoperiodic signals
  • Autoregressive(p) process
  • Continuous autoregressive process (CAR)
  • Nonlinear Autoregressive Moving Average model (NARMA)

Noise Types

  • White noise
  • Red noise

Installation

To install the package via github,

git clone https://github.com/TimeSynth/TimeSynth.git
cd TimeSynth
python setup.py install

Using TimeSynth

$ python

The code snippet demonstrates creating a irregular sinusoidal signal with white noise.

>>> import timesynth as ts
>>> # Initializing TimeSampler
>>> time_sampler = ts.TimeSampler(stop_time=20)
>>> # Sampling irregular time samples
>>> irregular_time_samples = time_sampler.sample_irregular_time(num_points=500, keep_percentage=50)
>>> # Initializing Sinusoidal signal
>>> sinusoid = ts.signals.Sinusoidal(frequency=0.25)
>>> # Initializing Gaussian noise
>>> white_noise = ts.noise.GaussianNoise(std=0.3)
>>> # Initializing TimeSeries class with the signal and noise objects
>>> timeseries = ts.TimeSeries(sinusoid, noise_generator=white_noise)
>>> # Sampling using the irregular time samples
>>> samples, signals, errors = timeseries.sample(irregular_time_samples)
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022