A collection of machine learning examples and tutorials.

Overview

machine_learning_examples

A collection of machine learning examples and tutorials.

Find associated tutorials at https://lazyprogrammer.me

Find associated courses at https://deeplearningcourses.com

Please note that not all code from all courses will be found in this repository. Some newer code examples (e.g. most of Tensorflow 2.0) were done in Google Colab. Therefore, you should check the instructions given in the lectures for the course you are taking.

How to I find the code for a particular course?

The code for each course is separated by folder. You can determine which folder corresponds with which course by watching the "Where to get the code" lecture inside the course (usually Lecture 2 or 3).

Remember: one folder = one course.

Why you should not fork this repo

I've noticed that many people have out-of-date forks. Thus, I recommend not forking this repository if you take one of my courses. I am constantly updating my courses, and your fork will soon become out-of-date. You should clone the repository instead to make it easy to get updates (i.e. just "git pull" randomly and frequently).

Where is the code for your latest courses?

Beginning with Tensorflow 2, I started to use Google Colab. For those courses, unless otherwise noted, the code will be on Google Colab. Links to the notebooks are provided in the course. See the lecture "Where to get the code" for further details.

VIP Course Links

*** Note: if any of these coupons becomes out of date, check my website (https://lazyprogrammer.me) for the latest version. I will probably just keep incrementing them numerically, e.g. FINANCEVIP2, FINANCEVIP3, etc..

Time Series Analysis, Forecasting, and Machine Learning

https://www.udemy.com/course/time-series-analysis/?couponCode=TIMEVIP4

Financial Engineering and Artificial Intelligence in Python

https://www.udemy.com/course/ai-finance/?couponCode=FINANCEVIP13

PyTorch: Deep Learning and Artificial Intelligence

https://www.udemy.com/course/pytorch-deep-learning/?couponCode=PYTORCHVIP18

Tensorflow 2.0: Deep Learning and Artificial Intelligence (VIP Version) https://deeplearningcourses.com/c/deep-learning-tensorflow-2

Deep Learning Courses Exclusives

Classical Statistical Inference and A/B Testing in Python https://deeplearningcourses.com/c/statistical-inference-in-python

Linear Programming for Linear Regression in Python https://deeplearningcourses.com/c/linear-programming-python

MATLAB for Students, Engineers, and Professionals in STEM https://deeplearningcourses.com/c/matlab

Other Course Links

Tensorflow 2.0: Deep Learning and Artificial Intelligence (non-VIP version) https://www.udemy.com/course/deep-learning-tensorflow-2/?referralCode=E10B72D3848AB70FE1B8

Cutting-Edge AI: Deep Reinforcement Learning in Python https://deeplearningcourses.com/c/cutting-edge-artificial-intelligence

Recommender Systems and Deep Learning in Python https://deeplearningcourses.com/c/recommender-systems

Machine Learning and AI: Support Vector Machines in Python https://deeplearningcourses.com/c/support-vector-machines-in-python

Deep Learning: Advanced Computer Vision https://deeplearningcourses.com/c/advanced-computer-vision

Deep Learning: Advanced NLP and RNNs https://deeplearningcourses.com/c/deep-learning-advanced-nlp

Deep Learning: GANs and Variational Autoencoders https://deeplearningcourses.com/c/deep-learning-gans-and-variational-autoencoders

Advanced AI: Deep Reinforcement Learning in Python https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python

Artificial Intelligence: Reinforcement Learning in Python https://deeplearningcourses.com/c/artificial-intelligence-reinforcement-learning-in-python

Natural Language Processing with Deep Learning in Python https://deeplearningcourses.com/c/natural-language-processing-with-deep-learning-in-python

Deep Learning: Recurrent Neural Networks in Python https://deeplearningcourses.com/c/deep-learning-recurrent-neural-networks-in-python

Unsupervised Machine Learning: Hidden Markov Models in Python https://deeplearningcourses.com/c/unsupervised-machine-learning-hidden-markov-models-in-python

Deep Learning Prerequisites: The Numpy Stack in Python https://deeplearningcourses.com/c/deep-learning-prerequisites-the-numpy-stack-in-python

Deep Learning Prerequisites: Linear Regression in Python https://deeplearningcourses.com/c/data-science-linear-regression-in-python

Deep Learning Prerequisites: Logistic Regression in Python https://deeplearningcourses.com/c/data-science-logistic-regression-in-python

Deep Learning in Python https://deeplearningcourses.com/c/data-science-deep-learning-in-python

Cluster Analysis and Unsupervised Machine Learning in Python https://deeplearningcourses.com/c/cluster-analysis-unsupervised-machine-learning-python

Data Science: Supervised Machine Learning in Python https://deeplearningcourses.com/c/data-science-supervised-machine-learning-in-python

Bayesian Machine Learning in Python: A/B Testing https://deeplearningcourses.com/c/bayesian-machine-learning-in-python-ab-testing

Easy Natural Language Processing in Python https://deeplearningcourses.com/c/data-science-natural-language-processing-in-python

Practical Deep Learning in Theano and TensorFlow https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow

Ensemble Machine Learning in Python: Random Forest and AdaBoost https://deeplearningcourses.com/c/machine-learning-in-python-random-forest-adaboost

Deep Learning: Convolutional Neural Networks in Python https://deeplearningcourses.com/c/deep-learning-convolutional-neural-networks-theano-tensorflow

Unsupervised Deep Learning in Python https://deeplearningcourses.com/c/unsupervised-deep-learning-in-python

Owner
LazyProgrammer.me
https://deeplearningcourses.com
LazyProgrammer.me
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022