Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Overview

Machine Learning Security

A short course on adversarial machine learning.

Academic Year 2021-2022

Instructors: Dr. Battista Biggio

Teaching Assistants: Dr. Ambra Demontis, Dr. Luca Demetrio, Dr. Kathrin Grosse, Maura Pintor

PhD programme in Information Engineering and Science (Univ. Siena)

PhD programme in Electronic and Computer Engineering (Univ. Cagliari)

MSc in Computer Engineering, Cybersecurity and Artificial Intelligence (Univ. Cagliari)

GitHub repository for course material: https://github.com/unica-mlsec/mlsec

Course objectives and outcome

Objectives

The objective of this course is to provide students with the fundamental elements of machine learning security in the context of different application domains. The main concepts and methods of adversarial machine learning are presented, from threat modeling to attacks and defenses, as well as basic methods to properly evaluate adversarial robustness of a machine learning model against different attacks.

Outcome

An understanding of fundamental concepts and methods of machine learning security and its applications. An ability to analyse and evaluate attacks and defenses in the context of application-specific domains. An ability to design and evaluate robust machine learning models with Python and test them on benchmark data sets.

Class schedule/Course Outline (20 hours, 2 CFU)

  1. Introduction to Machine Learning Security: Threat Models and Attacks (Video01) - Sept. 14, 9-12; Sept. 15, 15-16.
  2. Evasion attacks and countermeasures - Sept. 15, 16-18; Sept. 16, 15-18; Sept. 17, 9-10.
  3. Poisoning attacks and countermeasures - Sept. 17, 10-12.
  4. Backdoor poisoning, privacy-related threats, and defenses - Sept. 22, 15-18.
  5. Practical session with Python - Sept. 23, 15-18.
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

åĪĐæēģ 32 Oct 25, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
A Collection of Conference & School Notes in Machine Learning ðŸĶ„📝🎉

Machine Learning Conference & Summer School Notes. ðŸĶ„📝🎉

558 Dec 28, 2022