Combines Bayesian analyses from many datasets.

Overview

PosteriorStacker

Combines Bayesian analyses from many datasets.

Introduction

Fitting a model to a data set gives posterior probability distributions for a parameter of interest. But how do you combine such probability distributions if you have many datasets?

This question arises frequently in astronomy when analysing samples, and trying to infer sample distributions of some quantity.

PosteriorStacker allows deriving sample distributions from posterior distributions from a number of objects.

Method

The method is described in Appendix A of Baronchelli, Nandra & Buchner (2020).

hbm.png

The inputs are posterior samples of a single parameter, for a number of objects. These need to come from pre-existing analyses, under a flat parameter prior.

The hierarchical Bayesian model (illustrated above) models the sample distribution as a Gaussian with unknown mean and standard deviation. The per-object parameters are also unknown, but integrated out numerically using the posterior samples.

Additional to the Gaussian model (as in the paper), a histogram model (using a flat Dirichlet prior distribution) is computed, which is non-parametric and more flexible. Both models are inferred using UltraNest.

The output is visualised in a publication-ready plot.

Synopsis of the program:

$ python3 posteriorstacker.py --help
usage: posteriorstacker.py [-h] [--verbose VERBOSE] [--name NAME]
                           filename low high nbins

Posterior stacking tool.

Johannes Buchner (C) 2020-2021

Given posterior distributions of some parameter from many objects,
computes the sample distribution, using a simple hierarchical model.

The method is described in Baronchelli, Nandra & Buchner (2020)
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.5284B/abstract
Two computations are performed with this tool:

- Gaussian model (as in the paper)
- Histogram model (using a Dirichlet prior distribution)

The histogram model is non-parametric and more flexible.
Both models are computed using UltraNest.
The output is plotted.

positional arguments:
  filename           Filename containing posterior samples, one object per line
  low                Lower end of the distribution
  high               Upper end of the distribution
  nbins              Number of histogram bins

optional arguments:
  -h, --help         show this help message and exit
  --verbose VERBOSE  Show progress
  --name NAME        Parameter name (for plot)

Johannes Buchner (C) 2020-2021 

Licence

AGPLv3 (see COPYING file). Contact me if you need a different licence.

Install

Clone or download this repository. You need to install the ultranest python package (e.g., with pip).

Tutorial

In this tutorial you will learn:

  • How to find a intrinsic distribution from data with asymmetric error bars and upper limits
  • How to use PosteriorStacker

Lets say we want to find the intrinsic velocity dispersion given some noisy data points.

Our data are velocity measurements of a few globular cluster velocities in a dwarf galaxy, fitted with some model.

Preparing the inputs

For generating the demo input files and plots, run:

$ python3 tutorial/gendata.py

Visualise the data

Lets plot the data first to see what is going on:

example.png

Caveat on language: These are not actually "the data" (which are counts on a CCD). Instead, this is a intermediate representation of a posterior/likelihood, assuming flat priors on velocity.

Data properties

This scatter plot shows:

  • large, sometimes asymmetric error bars
  • intrinsic scatter

Resampling the data

We could also represent each data point by a cloud of samples. Each point represents a possible true solution of that galaxy.

example-samples.png

Running PosteriorStacker

We run the script with a range limit of +-100 km/s:

$ python3 posteriorstacker.py posteriorsamples.txt -80 +80 11 --name="Velocity [km/s]"
fitting histogram model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-1e+01
[ultranest] Likelihood function evaluations: 114176
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -20.68 +- 0.06865
[ultranest] Effective samples strategy satisfied (ESS = 684.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.08 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.14, need <0.5)
[ultranest]   logZ error budget: single: 0.07 bs:0.07 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -20.677 +- 0.424
  single instance: logZ = -20.677 +- 0.074
  bootstrapped   : logZ = -20.676 +- 0.123
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 377.0 iterations

    bin1                0.051 +- 0.046
    bin2                0.052 +- 0.051
    bin3                0.065 +- 0.058
    bin4                0.062 +- 0.057
    bin5                0.108 +- 0.085
    bin6                0.31 +- 0.14
    bin7                0.16 +- 0.10
    bin8                0.051 +- 0.050
    bin9                0.047 +- 0.044
    bin10               0.048 +- 0.047
    bin11               0.047 +- 0.045
fitting gaussian model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-4e+01
[ultranest] Likelihood function evaluations: 4544
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -47.33 +- 0.07996
[ultranest] Effective samples strategy satisfied (ESS = 1011.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.07 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.17, need <0.5)
[ultranest]   logZ error budget: single: 0.13 bs:0.08 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -47.341 +- 0.440
  single instance: logZ = -47.341 +- 0.126
  bootstrapped   : logZ = -47.331 +- 0.173
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 13.0 iterations

    mean                -0.3 +- 4.7
    std                 11.6 +- 5.2

Vary the number of samples to check numerical stability!
plotting results ...

Notice the parameters of the fitted gaussian distribution above. The standard deviation is quite small (which was the point of the original paper). A corner plot is at posteriorsamples.txt_out_gauss/plots/corner.pdf

Visualising the results

Here is the output plot, converted to png for this tutorial with:

$ convert -density 100 posteriorsamples.txt_out.pdf out.png

out.png

In black, we see the non-parametric fit. The red curve shows the gaussian model.

The histogram model indicates that a more heavy-tailed distribution may be better.

The error bars in gray is the result of naively averaging the posteriors. This is not a statistically meaningful procedure, but it can give you ideas what models you may want to try for the sample distribution.

Output files

  • posteriorsamples.txt_out.pdf contains a plot,
  • posteriorsamples.txt_out_gauss contain the ultranest analyses output assuming a Gaussian distribution.
  • posteriorsamples.txt_out_flexN contain the ultranest analyses output assuming a histogram model.
  • The directories include diagnostic plots, corner plots and posterior samples of the distribution parameters.

With these output files, you can:

  • plot the sample parameter distribution
  • report the mean and spread, and their uncertainties
  • split the sample by some parameter, and plot the sample mean as a function of that parameter.

If you want to adjust the plot, just edit the script.

If you want to try a different distribution, adapt the script. It uses UltraNest for the inference.

Take-aways

  • PosteriorStacker computed a intrinsic distribution from a set of uncertain measurements
  • This tool can combine arbitrarily pre-existing analyses.
  • No assumptions about the posterior shapes were necessary -- multi-modal and asymmetric works fine.
Owner
Johannes Buchner
Johannes Buchner
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022