Combines Bayesian analyses from many datasets.

Overview

PosteriorStacker

Combines Bayesian analyses from many datasets.

Introduction

Fitting a model to a data set gives posterior probability distributions for a parameter of interest. But how do you combine such probability distributions if you have many datasets?

This question arises frequently in astronomy when analysing samples, and trying to infer sample distributions of some quantity.

PosteriorStacker allows deriving sample distributions from posterior distributions from a number of objects.

Method

The method is described in Appendix A of Baronchelli, Nandra & Buchner (2020).

hbm.png

The inputs are posterior samples of a single parameter, for a number of objects. These need to come from pre-existing analyses, under a flat parameter prior.

The hierarchical Bayesian model (illustrated above) models the sample distribution as a Gaussian with unknown mean and standard deviation. The per-object parameters are also unknown, but integrated out numerically using the posterior samples.

Additional to the Gaussian model (as in the paper), a histogram model (using a flat Dirichlet prior distribution) is computed, which is non-parametric and more flexible. Both models are inferred using UltraNest.

The output is visualised in a publication-ready plot.

Synopsis of the program:

$ python3 posteriorstacker.py --help
usage: posteriorstacker.py [-h] [--verbose VERBOSE] [--name NAME]
                           filename low high nbins

Posterior stacking tool.

Johannes Buchner (C) 2020-2021

Given posterior distributions of some parameter from many objects,
computes the sample distribution, using a simple hierarchical model.

The method is described in Baronchelli, Nandra & Buchner (2020)
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.5284B/abstract
Two computations are performed with this tool:

- Gaussian model (as in the paper)
- Histogram model (using a Dirichlet prior distribution)

The histogram model is non-parametric and more flexible.
Both models are computed using UltraNest.
The output is plotted.

positional arguments:
  filename           Filename containing posterior samples, one object per line
  low                Lower end of the distribution
  high               Upper end of the distribution
  nbins              Number of histogram bins

optional arguments:
  -h, --help         show this help message and exit
  --verbose VERBOSE  Show progress
  --name NAME        Parameter name (for plot)

Johannes Buchner (C) 2020-2021 

Licence

AGPLv3 (see COPYING file). Contact me if you need a different licence.

Install

Clone or download this repository. You need to install the ultranest python package (e.g., with pip).

Tutorial

In this tutorial you will learn:

  • How to find a intrinsic distribution from data with asymmetric error bars and upper limits
  • How to use PosteriorStacker

Lets say we want to find the intrinsic velocity dispersion given some noisy data points.

Our data are velocity measurements of a few globular cluster velocities in a dwarf galaxy, fitted with some model.

Preparing the inputs

For generating the demo input files and plots, run:

$ python3 tutorial/gendata.py

Visualise the data

Lets plot the data first to see what is going on:

example.png

Caveat on language: These are not actually "the data" (which are counts on a CCD). Instead, this is a intermediate representation of a posterior/likelihood, assuming flat priors on velocity.

Data properties

This scatter plot shows:

  • large, sometimes asymmetric error bars
  • intrinsic scatter

Resampling the data

We could also represent each data point by a cloud of samples. Each point represents a possible true solution of that galaxy.

example-samples.png

Running PosteriorStacker

We run the script with a range limit of +-100 km/s:

$ python3 posteriorstacker.py posteriorsamples.txt -80 +80 11 --name="Velocity [km/s]"
fitting histogram model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-1e+01
[ultranest] Likelihood function evaluations: 114176
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -20.68 +- 0.06865
[ultranest] Effective samples strategy satisfied (ESS = 684.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.08 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.14, need <0.5)
[ultranest]   logZ error budget: single: 0.07 bs:0.07 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -20.677 +- 0.424
  single instance: logZ = -20.677 +- 0.074
  bootstrapped   : logZ = -20.676 +- 0.123
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 377.0 iterations

    bin1                0.051 +- 0.046
    bin2                0.052 +- 0.051
    bin3                0.065 +- 0.058
    bin4                0.062 +- 0.057
    bin5                0.108 +- 0.085
    bin6                0.31 +- 0.14
    bin7                0.16 +- 0.10
    bin8                0.051 +- 0.050
    bin9                0.047 +- 0.044
    bin10               0.048 +- 0.047
    bin11               0.047 +- 0.045
fitting gaussian model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-4e+01
[ultranest] Likelihood function evaluations: 4544
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -47.33 +- 0.07996
[ultranest] Effective samples strategy satisfied (ESS = 1011.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.07 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.17, need <0.5)
[ultranest]   logZ error budget: single: 0.13 bs:0.08 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -47.341 +- 0.440
  single instance: logZ = -47.341 +- 0.126
  bootstrapped   : logZ = -47.331 +- 0.173
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 13.0 iterations

    mean                -0.3 +- 4.7
    std                 11.6 +- 5.2

Vary the number of samples to check numerical stability!
plotting results ...

Notice the parameters of the fitted gaussian distribution above. The standard deviation is quite small (which was the point of the original paper). A corner plot is at posteriorsamples.txt_out_gauss/plots/corner.pdf

Visualising the results

Here is the output plot, converted to png for this tutorial with:

$ convert -density 100 posteriorsamples.txt_out.pdf out.png

out.png

In black, we see the non-parametric fit. The red curve shows the gaussian model.

The histogram model indicates that a more heavy-tailed distribution may be better.

The error bars in gray is the result of naively averaging the posteriors. This is not a statistically meaningful procedure, but it can give you ideas what models you may want to try for the sample distribution.

Output files

  • posteriorsamples.txt_out.pdf contains a plot,
  • posteriorsamples.txt_out_gauss contain the ultranest analyses output assuming a Gaussian distribution.
  • posteriorsamples.txt_out_flexN contain the ultranest analyses output assuming a histogram model.
  • The directories include diagnostic plots, corner plots and posterior samples of the distribution parameters.

With these output files, you can:

  • plot the sample parameter distribution
  • report the mean and spread, and their uncertainties
  • split the sample by some parameter, and plot the sample mean as a function of that parameter.

If you want to adjust the plot, just edit the script.

If you want to try a different distribution, adapt the script. It uses UltraNest for the inference.

Take-aways

  • PosteriorStacker computed a intrinsic distribution from a set of uncertain measurements
  • This tool can combine arbitrarily pre-existing analyses.
  • No assumptions about the posterior shapes were necessary -- multi-modal and asymmetric works fine.
Owner
Johannes Buchner
Johannes Buchner
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022