Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

Overview

patterns-finder

Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

This library offers the capabilities:

  • A set of predefined patterns with the most useful regex.
  • Extend the patterns, by adding user defined regex.
  • Find and extarct patterns from text
  • Pandas' Dataframe support.
  • Sort the results of extraction.
  • Summarize the results of extraction.
  • Display extractions by visualy rich text annotation.
  • Build complex extraction rules based on regex (in future release).

Installation

To install the last version of patterns-finder library, use pip:

pip install patterns-finder

Usage

Find a pattern in the text

Just import patterns, like emoji from patterns_finder.patterns.web, then you can use them to find pattern in text:

from patterns_finder.patterns.web import emoji, url, email 

emoji.find("the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 ")
# Output:
# [(18, 19, 'EMOJI', '🦊'), (49, 50, 'EMOJI', '🐶')]

url.find("The lazy 🐶 has a website https://lazy.dog.com ")
# Output:
# [(25, 45, 'URL', 'https://lazy.dog.com')]

email.find("[email protected] is the email of 🦊 ")
# Output:
# [(0, 19, 'EMAIL', '[email protected]')]

The results provided by the method find for each of pattern are in the form:

[(0, 19, 'EMAIL', '[email protected]')]
  ^  ^       ^          ^ 
  |  |       |          |
 Offset      |          └ Text matching the pattern
  |  |       └ Label of the pattern
  |  └ End index
  └ Start index in the text

Find multiple patterns in the text

To search for different patterns in the text we can use the method finder.patterns_in_text(text, patterns) as follows:

from patterns_finder import finder
from patterns_finder.patterns.web import emoji, url, color_hex
from patterns_finder.patterns.number import integer

patterns = [emoji, color_hex, integer]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output:
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (12, 14, 'INTEGER', '52'),
#  (15, 16, 'INTEGER', '2'),
#  (27, 28, 'INTEGER', '3')]

Find user defined patterns in the text

To define new pattern you can use any regex pattern that are supported by the regex and re packages of python. User defined patterns can be writen in the form of string regex pattern or tuple of string ('regex pattern', 'label').

patterns = [web.emoji, "quick|lazy", ("\\b[a-zA-Z]+\\b", "WORD") ]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output: 
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (4, 9, 'quick|lazy', 'quick'),
#  (44, 48, 'quick|lazy', 'lazy'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]

Sort extraxted patterns

By using the argument sort_by of the method finder.patterns_in_text we can sort the extraction accoring to different options:

  • sort_by=finder.START sorts the results by the start index in the text
patterns = [web.emoji, color_hex, ('\\b[a-zA-Z]+\\b', 'WORD') ]
finder.patterns_in_text(text, patterns, sort_by=finder.START)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.END sorts the results by the end index in the text
finder.patterns_in_text(text, patterns, sort_by=finder.END)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.LABEL sorts the results by pattern's label
finder.patterns_in_text(text, patterns, sort_by=finder.LABEL)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]
  • sort_by=finder.TEXT sorts the results by the extracted text
finder.patterns_in_text(text, patterns, sort_by=finder.TEXT)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (20, 26, 'WORD', 'jumped'),
#  (44, 48, 'WORD', 'lazy'),
#  (35, 39, 'WORD', 'over'),
#  (4, 9, 'WORD', 'quick'),
#  (0, 3, 'WORD', 'the'),
#  (40, 43, 'WORD', 'the'),
#  (29, 34, 'WORD', 'times'),
#  (49, 50, 'EMOJI', '🐶'),
#  (18, 19, 'EMOJI', '🦊')]

Summarize results of extraction

By using the argument summary_type, one can choose the desired form of output results.

  • summary_type=finder.NONE retruns a list with all details, without summarization.
patterns = [ color_hex, ('\\b[a-zA-Z]+\\b', 'WORD'), web.emoji ]
finder.patterns_in_text(text, patterns, summary_type=finder.NONE)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶')]
  • summary_type=finder.LABEL_TEXT_OFFSET returns a dictionary of patterns labels as keys, with the corresponding offsets and text as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT_OFFSET)
# Output:
# {
#  'COLOR_HEX': [[10, 17, '#A52A2A']],
#  'WORD': [[0, 3, 'the'], [4, 9, 'quick'], [20, 26, 'jumped'], [29, 34, 'times'], [35, 39, 'over'], [40, 43, 'the'], [44, 48, 'lazy']],
#  'EMOJI': [[18, 19, '🦊'], [49, 50, '🐶']]
# }
  • summary_type=finder.LABEL_TEXT returns a dictionary of patterns labels as keys, with the corresponding text (without offset) as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT)
# Output:
# {
#  'COLOR_HEX': ['#A52A2A'],
#  'WORD': ['the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy'],
#  'EMOJI': ['🦊', '🐶']
# }
  • summary_type=finder.TEXT_ONLY returns a list of the extracted text only.
finder.patterns_in_text(text, patterns, summary_type=finder.TEXT_ONLY)
# Output:
# ['#A52A2A', 'the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy', '🦊', '🐶']

Extract patterns from Pandas DataFrame

This package provides the capability to extract patterns from Pandas' DataFrame easily, by using the method finder.patterns_in_df(df, input_col, output_col, patterns, ...).

from patterns_finder import finder
from patterns_finder.patterns import web
import pandas as pd

patterns = [web.email, web.emoji, web.url]

df = pd.DataFrame(data={
    'text': ["the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶",
                    "[email protected] is the email of 🦊",
                    "The lazy 🐶 has a website https://lazy.dog.com"],
    })

finder.patterns_in_df(df, "text", "extraction", patterns, summary_type=finder.LABEL_TEXT)
# Output:
# |    | text                                                 | extraction                                          |
# |---:|:-----------------------------------------------------|:----------------------------------------------------|
# |  0 | the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 | {'EMOJI': ['🦊', '🐶']}                            |
# |  1 | [email protected] is the email of 🦊               | {'EMAIL': ['[email protected]'], 'EMOJI': ['🦊']} |
# |  2 | The lazy 🐶 has a website https://lazy.dog.com       | {'EMOJI': ['🐶'], 'URL': ['https://lazy.dog.com']}  |

The method finder.patterns_in_df have also the arguments summary_type and sort_by.

List of all predefined patterns

  • Web
from patterns_finder.web import email, url, uri, mailto, html_link, sql, color_hex, copyright, alphanumeric, emoji, username, quotation, ipv4, ipv6
  • Phone
from patterns_finder.phone import generic, uk, us
  • Credit Cards
from patterns_finder.credit_card import generic, visa, mastercard, discover, american_express
  • Numbers
from patterns_finder.number import integer, float, scientific, hexadecimal, percent, roman
  • Currency
from patterns_finder.currency import monetary, symbol, code, name
  • Languages
from patterns_finder.language import english, french, spanish, arabic, hebrew, turkish, russian, german, chinese, greek, japanese, hindi, bangali, armenian, swedish, portoguese, balinese, georgian
  • Time and Date
from patterns_finder.time_date import time, date, year
  • Postal Code
from patterns_finder.postal_code import us, canada, uk, france, spain, switzerland, brazilian

Contact

Please email your questions or comments to me.

You might also like...
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Comments
  • Add Support for Patents patterns

    Add Support for Patents patterns

    Support Patent patterns w/ first implementation to support Patents globally

    Example usage:

    from patterns_finder.patterns.patents import global_patent
    global_patent.find("Patent US5960368A is titled Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials ")
    # Output:
    # [(7, 16, 'PATENT', 'US5960368A')]
    
    

    requesting permission to add the patterns :p

    opened by mahzy 0
Releases(1.0.1)
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022