The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Overview

Easy-to-use toolkit for retrieval-based Chatbot

Recent Activity

  1. Our released RRS corpus can be found here.
  2. Our released BERT-FP post-training checkpoint for the RRS corpus can be found here.
  3. Our related work (Exploring Dense Retrieval for Dialogue Response Selection) can be found here.

How to Use

  1. Init the repo

    Before using the repo, please run the following command to init:

    # create the necessay folders
    python init.py
    
    # prepare the environment
    # if some package cannot be installed, just google and install it from other ways
    pip install -r requirements.txt
  2. train the model

    ./scripts/train.sh <dataset_name> <model_name> <cuda_ids>
  3. test the model [rerank]

    ./scripts/test_rerank.sh <dataset_name> <model_name> <cuda_id>
  4. test the model [recal]

    # different recall_modes are available: q-q, q-r
    ./scripts/test_recall.sh <dataset_name> <model_name> <cuda_id>
  5. inference the responses and save into the faiss index

    Somethings inference will missing data samples, please use the 1 gpu (faiss-gpu search use 1 gpu quickly)

    It should be noted that: 1. For writer dataset, use extract_inference.py script to generate the inference.txt 2. For other datasets(douban, ecommerce, ubuntu), just cp train.txt inference.txt. The dataloader will automatically read the test.txt to supply the corpus.

    # work_mode=response, inference the response and save into faiss (for q-r matching) [dual-bert/dual-bert-fusion]
    # work_mode=context, inference the context to do q-q matching
    # work_mode=gray, inference the context; read the faiss(work_mode=response has already been done), search the topk hard negative samples; remember to set the BERTDualInferenceContextDataloader in config/base.yaml
    ./scripts/inference.sh <dataset_name> <model_name> <cuda_ids>

    If you want to generate the gray dataset for the dataset:

    # 1. set the mode as the **response**, to generate the response faiss index; corresponding dataset name: BERTDualInferenceDataset;
    ./scripts/inference.sh <dataset_name> response <cuda_ids>
    
    # 2. set the mode as the **gray**, to inference the context in the train.txt and search the top-k candidates as the gray(hard negative) samples; corresponding dataset name: BERTDualInferenceContextDataset
    ./scripts/inference.sh <dataset_name> gray <cuda_ids>
    
    # 3. set the mode as the **gray-one2many** if you want to generate the extra positive samples for each context in the train set, the needings of this mode is the same as the **gray** work mode
    ./scripts/inference.sh <dataset_name> gray-one2many <cuda_ids>

    If you want to generate the pesudo positive pairs, run the following commands:

    # make sure the dual-bert inference dataset name is BERTDualInferenceDataset
    ./scripts/inference.sh <dataset_name> unparallel <cuda_ids>
  6. deploy the rerank and recall model

    # load the model on the cuda:0(can be changed in deploy.sh script)
    ./scripts/deploy.sh <cuda_id>

    at the same time, you can test the deployed model by using:

    # test_mode: recall, rerank, pipeline
    ./scripts/test_api.sh <test_mode> <dataset>
  7. test the recall performance of the elasticsearch

    Before testing the es recall, make sure the es index has been built:

    # recall_mode: q-q/q-r
    ./scripts/build_es_index.sh <dataset_name> <recall_mode>
    # recall_mode: q-q/q-r
    ./scripts/test_es_recall.sh <dataset_name> <recall_mode> 0
  8. simcse generate the gray responses

    # train the simcse model
    ./script/train.sh <dataset_name> simcse <cuda_ids>
    # generate the faiss index, dataset name: BERTSimCSEInferenceDataset
    ./script/inference_response.sh <dataset_name> simcse <cuda_ids>
    # generate the context index
    ./script/inference_simcse_response.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_simcse_unlikelyhood_response.sh <dataset_name> simcse <cuda_ids>
    # generate the gray response
    ./script/inference_gray_simcse.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_gray_simcse_unlikelyhood.sh <dataset_name> simcse <cuda_ids>
Owner
GMFTBY
Those who are crazy enough to think they can change the world are the ones who can.
GMFTBY
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021