ACL'22: Structured Pruning Learns Compact and Accurate Models

Overview

CoFiPruning: Structured Pruning Learns Compact and Accurate Models

This repository contains the code and pruned models for our ACL'22 paper Structured Pruning Learns Compact and Accurate Models.

**************************** Updates ****************************

  • 05/09/2022: We release the pruned model checkpoints on RTE, MRPC and CoLA!
  • 04/01/2022: We released our paper along with pruned model checkpoints on SQuAD, SST-2, QNLI and MNLI. Check it out!

Quick Links

Overview

We propose CoFiPruning, a task-specific, structured pruning approach (Coarse and Fine-grained Pruning) and show that structured pruning can achieve highly compact subnetworks and obtain large speedups and competitive accuracy as distillation approaches, while requiring much less computation. Our key insight is to jointly prune coarse-grained units (e.g., self-attention or feed-forward layers) and fine-grained units (e.g., heads, hidden dimensions) simultaneously. Different from existing works, our approach controls the pruning decision of every single parameter by multiple masks of different granularity. This is the key to large compression, as it allows the greatest flexibility of pruned structures and eases the optimization compared to only pruning small units. We also devise a layerwise distillation strategy to transfer knowledge from unpruned to pruned models during optimization.

Main Results

We show the main results of CoFiPruning along with results of popular pruning and distillation methods including Block Pruning, DynaBERT, DistilBERT and TinyBERT. Please see more detailed results in our paper.

Model List

Our released models are listed as following. You can download these models with the following links. We use a batch size of 128 and V100 32GB GPUs for speedup evaluation. We show F1 score for SQuAD and accuracy score for GLUE datasets. s60 denotes that the sparsity of the model is roughly 60%.

model name task sparsity speedup score
princeton-nlp/CoFi-MNLI-s60 MNLI 60.2% 2.1 × 85.3
princeton-nlp/CoFi-MNLI-s95 MNLI 94.3% 12.1 × 80.6
princeton-nlp/CoFi-QNLI-s60 QNLI 60.3% 2.1 × 91.8
princeton-nlp/CoFi-QNLI-s95 QNLI 94.5% 12.1 × 86.1
princeton-nlp/CoFi-SST2-s60 SST-2 60.1% 2.1 × 93.0
princeton-nlp/CoFi-SST2-s95 SST-2 94.5% 12.2 × 90.4
princeton-nlp/CoFi-SQuAD-s60 SQuAD 59.8% 2.0 × 89.1
princeton-nlp/CoFi-SQuAD-s93 SQuAD 92.4% 8.7 × 82.6
princeton-nlp/CoFi-RTE-s60 RTE 60.2% 2.0 x 72.6
princeton-nlp/CoFi-RTE-s96 RTE 96.2% 12.8 x 66.1
princeton-nlp/CoFi-CoLA-s60 CoLA 60.4% 2.0 x 60.4
princeton-nlp/CoFi-CoLA-s95 CoLA 95.1% 12.3 x 38.9
princeton-nlp/CoFi-MRPC-s60 MRPC 61.5% 2.0 x 86.8
princeton-nlp/CoFi-MRPC-s95 MRPC 94.9% 12.2 x 83.6

You can use these models with the huggingface interface:

from CoFiPruning.models import CoFiBertForSequenceClassification
model = CoFiBertForSequenceClassification.from_pretrained("princeton-nlp/CoFi-MNLI-s95") 
output = model(**inputs)

Train CoFiPruning

In the following section, we provide instructions on training CoFi with our code.

Requirements

Try runing the following script to install the dependencies.

pip install -r requirements.txt

Training

Training scripts

We provide example training scripts for training with CoFiPruning with different combination of training units and objectives in scripts/run_CoFi.sh. The script only supports single-GPU training and we explain the arguments in following:

  • --task_name: we support sequence classification tasks and extractive question answer tasks. You can input a glue task name, e.g., MNLI or use --train_file and --validation_file arguments with other tasks (supported by HuggingFace).
  • --ex_name_suffix: experiment name (for output dir)
  • --ex_cate: experiment category name (for output dir)
  • --pruning_type: we support all combinations of the following four types of pruning units. Default pruning type is structured_heads+structured_mlp+hidden+layer. Setting it to None falls back to standard fine-tuning.
    • structured_heads: head pruning
    • structured_mlp: mlp intermediate dimension pruning
    • hidden: hidden states pruning
    • layer: layer pruning
  • --target_sparsity: target sparsity of the pruned model
  • --distillation_path: the directory of the teacher model
  • --distillation_layer_loss_alpha: weight for layer distillation
  • --distillation_ce_loss_alpha: weight for cross entropy distillation
  • --layer_distill_version: we recommend using version 4 for small-sized datasets to impose an explicit restriction on layer orders but for relatively larger datasets, version 3 and version 4 do not make much difference.

After pruning the model, the same script could be used for further fine-tuning the pruned model with following arguments:

  • --pretrained_pruned_model: directory of the pruned model
  • --learning_rate: learning rate of the fine-tuning stage Note that during fine-tuning stage, pruning_type should be set to None.

An example for training (pruning) is as follows:

TASK=MNLI
SUFFIX=sparsity0.95
EX_CATE=CoFi
PRUNING_TYPE=structured_head+structured_mlp+hidden+layer
SPARSITY=0.95
DISTILL_LAYER_LOSS_ALPHA=0.9
DISTILL_CE_LOSS_ALPHA=0.1
LAYER_DISTILL_VERSION=4

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION

An example for fine_tuning after pruning is as follows:

PRUNED_MODEL_PATH=$proj_dir/$TASK/$EX_CATE/${TASK}_${SUFFIX}/best
PRUNING_TYPE=None # Setting the pruning type to be None for standard fine-tuning.
LEARNING_RATE=3e-5

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION [PRUNED_MODEL_PATH] $LEARNING_RATE

The training process will save the model with the best validation accuracy under $PRUNED_MODEL_PATH/best. And you can use the evaluation.py script for evaluation.

Evaluation

Our pruned models are served on Huggingface's model hub. You can use the script evalution.py to get the sparsity, inference time and development set results of a pruned model.

python evaluation.py [TASK] [MODEL_NAME_OR_DIR]

An example use of evaluating a sentence classification model is as follows:

python evaluation.py MNLI princeton-nlp/CoFi-MNLI-s95 

The expected output of the model is as follows:

Task: MNLI
Model path: princeton-nlp/CoFi-MNLI-s95
Model size: 4920106
Sparsity: 0.943
mnli/acc: 0.8055
seconds/example: 0.010151

Hyperparameters

We use the following hyperparamters for training CoFiPruning:

GLUE (small) GLUE (large) SQuAD
Batch size 32 32 16
Pruning learning rate 2e-5 2e-5 3e-5
Fine-tuning learning rate 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5
Layer distill. alpha 0.9, 0.7, 0.5 0.9, 0.7, 0.5 0.9, 0.7, 0.5
Cross entropy distill. alpha 0.1, 0.3, 0.5 0.1, 0.3, 0.5 0.1, 0.3, 0.5
Pruning epochs 100 20 20
Pre-finetuning epochs 4 1 1
Sparsity warmup epochs 20 2 2
Finetuning epochs 20 20 20

GLUE (small) denotes the GLUE tasks with a relatively smaller size including CoLA, STS-B, MRPC and RTE and GLUE (large) denotes the rest of the GLUE tasks including SST-2, MNLI, QQP and QNLI. Note that hyperparameter search is essential for small-sized datasets but is less important for large-sized datasets.

Bugs or Questions?

If you have any questions related to the code or the paper, feel free to email Mengzhou ([email protected]) and Zexuan ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use CoFiPruning in your work:

@inproceedings{xia2022structured,
   title={Structured Pruning Learns Compact and Accurate Models},
   author={Xia, Mengzhou and Zhong, Zexuan and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2022}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022