Extracting Summary Knowledge Graphs from Long Documents

Overview

GraphSum

This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other baseline TTG is simply based on BertSumExt.

Environment Setup

This code is tested on python 3.6.9, transformer 3.0.2 and pytorch 1.7.0. You would also need numpy and scipy packages.

Data

Download and unzip the data from this link. Put the unzipped folder named as ./data parallel with ./src. You should see four subfolders under ./data/json, corresponding to four data splits as described in the paper.

Under each subfolder, the json file contains all document full texts, abstracts as well as the summarized graphs obtained from the abstract, organized by the document keys. Each full text consists of a list of sections. Each summarized graph contains a list of entity and relation mentions. Except for the test split, other three data splits have their summarized graphs obtained by running DyGIE++ on the abstract. The test set have manually annotated summarized graphs from SciERC dataset. The format of the graph follows the output of DyGIE++, where each entity mention in a section is represented by (start token id, end token id, entity type) and each relation mention is represented by (start token id of entity 1, end token id of entity 1, start token id of entity 2, end token id of entity 2, relation type). The graph also contains a list of coreferential entity mentions.

You should also see two subfolders under the processed folder of each data split: merged_entities and aligned_entities. merged_entities contains the full and summarized graphs for each document, where the graph vertices are cluster of entity mentions. Entity clusters in each summarized graph are coreferential entity mentions predicted by DyGIE++ or annotated (in test set). Entity clusters in each full graph contains entity mentions that are coreferences or share the same non-generic string names (as described in our paper). Under merged_entities, we provide entity clusters and relations between entity clusters, as well as corresponding entity and relation mentions in the full paper or abstract. Each relation is represented by "[entity cluster id 1]_[entity cluster id 2]_[relation type]". The original full graphs with all entity and relation mentions are obtained by running DyGIE++ on the document full text. You don't need them to run the code, but you can find them here. For some entity names, you may see a trailing string "<GENERIC_ID> [number]". It means these entity names are classified by DyGIE++ as "generic" and the trailing string is used to differentiate the same entity name strings in different clusters in such cases.

aligned_entities contains the pre-calculated alignment between entity clusters (see Section 5.1 in the paper) in the summarized and full graphs for each document. In each entity alignment file, under each entity cluster of the summarized graph, there is a list of entity clusters from the full graph if the list is not empty. They are used to facilitate data preprocessing of G2G and evaluation.

Training and Evaluation

The model is based on GAT. Go to ./src and run bash run.sh. You can also find the pretrained model here. Put it under ./src/output and run the inference and evaluation parts in ./src/run.sh.

Owner
Zeqiu (Ellen) Wu
PhD Student at UW NLP Research Group
Zeqiu (Ellen) Wu
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Yuqing Xie 2 Feb 17, 2022