Python module (C extension and plain python) implementing Aho-Corasick algorithm

Overview

pyahocorasick

Linux Master branch tests status Windows Master branch tests status

pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find multiple key strings occurrences at once in some input text. The library provides an ahocorasick Python module that you can use as a plain dict-like Trie or convert a Trie to an automaton for efficient Aho-Corasick search.

It is implemented in C and tested on Python 2.7 and 3.4+. It works on Linux, Mac and Windows.

The license is BSD-3-clause. Some utilities, such as tests and the pure Python automaton are dedicated to the Public Domain.

Download and source code

You can fetch pyahocorasick from:

Quick start

This module is written in C. You need a C compiler installed to compile native CPython extensions. To install:

pip install pyahocorasick

Then create an Automaton:

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

You can use the Automaton class as a trie. Add some string keys and their associated value to this trie. Here we associate a tuple of (insertion index, original string) as a value to each key string we add to the trie:

>>> for idx, key in enumerate('he her hers she'.split()):
...   A.add_word(key, (idx, key))

Then check if some string exists in the trie:

>>> 'he' in A
True
>>> 'HER' in A
False

And play with the get() dict-like method:

>>> A.get('he')
(0, 'he')
>>> A.get('she')
(3, 'she')
>>> A.get('cat', 'not exists')
'not exists'
>>> A.get('dog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError

Now convert the trie to an Aho-Corasick automaton to enable Aho-Corasick search:

>>> A.make_automaton()

Then search all occurrences of the keys (the needles) in an input string (our haystack).

Here we print the results and just check that they are correct. The Automaton.iter() method return the results as two-tuples of the end index where a trie key was found in the input string and the associated value for this key. Here we had stored as values a tuple with the original string and its trie insertion order:

>>> for end_index, (insert_order, original_value) in A.iter(haystack):
...     start_index = end_index - len(original_value) + 1
...     print((start_index, end_index, (insert_order, original_value)))
...     assert haystack[start_index:start_index + len(original_value)] == original_value
...
(1, 2, (0, 'he'))
(1, 3, (1, 'her'))
(1, 4, (2, 'hers'))
(4, 6, (3, 'she'))
(5, 6, (0, 'he'))

You can also create an eventually large automaton ahead of time and pickle it to re-load later. Here we just pickle to a string. You would typically pickle to a file instead:

>>> import cPickle
>>> pickled = cPickle.dumps(A)
>>> B = cPickle.loads(pickled)
>>> B.get('he')
(0, 'he')
See also:

Documentation

The full documentation including the API overview and reference is published on readthedocs.

Overview

With an Aho-Corasick automaton you can efficiently search all occurrences of multiple strings (the needles) in an input string (the haystack) making a single pass over the input string. With pyahocorasick you can eventually build large automatons and pickle them to reuse them over and over as an indexed structure for fast multi pattern string matching.

One of the advantages of an Aho-Corasick automaton is that the typical worst-case and best-case runtimes are about the same and depends primarily on the size of the input string and secondarily on the number of matches returned. While this may not be the fastest string search algorithm in all cases, it can search for multiple strings at once and its runtime guarantees make it rather unique. Because pyahocorasick is based on a Trie, it stores redundant keys prefixes only once using memory efficiently.

A drawback is that it needs to be constructed and "finalized" ahead of time before you can search strings. In several applications where you search for several pre-defined "needles" in a variable "haystacks" this is actually an advantage.

Aho-Corasick automatons are commonly used for fast multi-pattern matching in intrusion detection systems (such as snort), anti-viruses and many other applications that need fast matching against a pre-defined set of string keys.

Internally an Aho-Corasick automaton is typically based on a Trie with extra data for failure links and an implementation of the Aho-Corasick search procedure.

Behind the scenes the pyahocorasick Python library implements these two data structures: a Trie and an Aho-Corasick string matching automaton. Both are exposed through the Automaton class.

In addition to Trie-like and Aho-Corasick methods and data structures, pyahocorasick also implements dict-like methods: The pyahocorasick Automaton is a Trie a dict-like structure indexed by string keys each associated with a value object. You can use this to retrieve an associated value in a time proportional to a string key length.

pyahocorasick is available in two flavors:

  • a CPython C-based extension, compatible with Python 2 and 3.
  • a simpler pure Python module, compatible with Python 2 and 3. This is only available in the source repository (not on Pypi) under the py/ directory and has a slightly different API.

Unicode and bytes

The type of strings accepted and returned by Automaton methods are either unicode or bytes, depending on a compile time settings (preprocessor definition of AHOCORASICK_UNICODE as set in setup.py).

The Automaton.unicode attributes can tell you how the library was built. On Python 3, unicode is the default. On Python 2, bytes is the default and only value.

Warning

When the library is built with unicode support on Python 3, an Automaton will store 2 or 4 bytes per letter, depending on your Python installation. When built for bytes, only one byte per letter is needed.

Unicode is NOT supported on Python 2 for now.

Build and install from PyPi

To install for common operating systems, use pip. Pre-built wheels should be available on Pypi at some point in the future:

pip install pyahocorasick

To build from sources you need to have a C compiler installed and configured which should be standard on Linux and easy to get on MacOSX.

On Windows and Python 2.7 you need the Microsoft Visual C++ Compiler for Python 2.7 (aka. Visual Studio 2008). There have been reports that pyahocorasick does not build yet with MinGW. It may build with cygwin but this has not been tested. If you get this working with these platforms, please report in a ticket!

To build from sources, clone the git repository or download and extract the source archive.

Install pip (and its setuptools companion) and then run (in a virtualenv of course!):

pip install .

If compilation succeeds, the module is ready to use.

Support

Support is available through the GitHub issue tracker to report bugs or ask questions.

Contributing

You can submit contributions through GitHub pull requests.

Authors

The initial author and maintainer is Wojciech Muła. Philippe Ombredanne, the current co-owner, rewrote documentation, setup CI servers and did a whole lot of work to make this module better accessible to end users.

Alphabetic list of authors:

  • Andrew Grigorev
  • Bogdan
  • David Woakes
  • Edward Betts
  • Frankie Robertson
  • Frederik Petersen
  • gladtosee
  • INADA Naoki
  • Jan Fan
  • Pastafarianist
  • Philippe Ombredanne
  • Renat Nasyrov
  • Sylvain Zimmer
  • Xiaopeng Xu

This library would not be possible without help of many people, who contributed in various ways. They created pull requests, reported bugs as GitHub issues or via direct messages, proposed fixes, or spent their valuable time on testing.

Thank you.

License

This library is licensed under very liberal BSD-3-Clause license. Some portions of the code are dedicated to the public domain such as the pure Python automaton and test code.

Full text of license is available in LICENSE file.

Other Aho-Corasick implementations for Python you can consider

While pyahocorasick tries to be the finest and fastest Aho Corasick library for Python you may consider these other libraries:

  • Written in pure Python.
  • Poor performance.
  • Written in pure Python.
  • Better performance than py-aho-corasick.
  • Using pypy, ahocorapy's search performance is only slightly worse than pyahocorasick's.
  • Performs additional suffix shortcutting (more setup overhead, less search overhead for suffix lookups).
  • Includes visualization tool for resulting automaton (using pygraphviz).
  • MIT-licensed, 100% test coverage, tested on all major python versions (+ pypy)
  • Written in C. Does not return overlapping matches.
  • Does not compile on Windows (July 2016).
  • No support for the pickle protocol.
  • Written in Cython.
  • Large automaton may take a long time to build (July 2016)
  • No support for a dict-like protocol to associate a value to a string key.
  • Written in C.
  • seems unmaintained (last update in 2005).
  • GPL-licensed.
Owner
Wojciech Muła
Wojciech Muła
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023