This repository contains Python scripts for extracting linguistic features from Filipino texts.

Overview

Filipino Text Linguistic Feature Extractors

This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were created for Joseph's MSCS thesis in readability assessment of children's books. The complete list of linguistic features including the formulas and descriptions are uploaded with this repo. I advise you to check the document first before running the codes.

The scripts only contain functions for extracting a specific feature. So, you only need to create a main.py file and import the necessary script you need and call the functions. For TRAD, SYLL, and LM, I'm fairly certain you are not going to encounter any dependency issues as most scripts just rely on string manipulation. However, I you want to use LEX and MORPH, you need to setup the the following:

  • JDK8 or any latest-ish version of JDK should work.
  • Lastest version of Stanford POS Tagger from the CoreNLP suite. Make sure to read how to set this up on your device.
  • Download the two Filipino models for the POS Tagger from Go and Nocon (2017)'s paper here and load them by reading the instruction at Stanford's FAQ website.

Disclaimer

The scripts uploaded were customized to the needs of the previous research where the these were created. You are free to change or tinker with some of the code according to your own research. For example, in LEX and MORPH, I don't calculate features for all sentence but only for a random subset. You may change this as you like but take caution that it might take a long time to finish parsing.

You may also update some of the features if you feel like it. For example, for extracting language model features in LM, I used an old literal way of calculating perplexity by scratch derived from this repo. This can be easily done efficiently with some open-source library like NLTK or Spacy, I believe.

Credits

If you find this repository useful, please cite the following papers:

Imperial, J. M., & Ong, E. (2021). Diverse Linguistic Features for Assessing Reading Difficulty of Educational Filipino Texts. arXiv preprint arXiv:2108.00241.

Imperial, J. M., & Ong, E. (2020). Exploring Hybrid Linguistic Feature Sets To Measure Filipino Text Readability. In 2020 International Conference on Asian Language Processing (IALP) (pp. 175-180). IEEE.

Imperial, J. M., & Ong, E. (2021). Application of Lexical Features Towards Improvement of Filipino Readability Identification of Children's Literature. arXiv preprint arXiv:2101.10537.

Contact

If there is something you want to tell me about, you may contact me using the following information:

Joseph Marvin Imperial
[email protected]
www.josephimperial.com

Owner
Joseph Imperial
Working on NLP for text complexity and readability. Researcher and instructor at National University PH.
Joseph Imperial
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022