Convolutional Neural Networks for Sentence Classification

Overview

Convolutional Neural Networks for Sentence Classification

Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014).

Runs the model on Pang and Lee's movie review dataset (MR in the paper). Please cite the original paper when using the data.

Requirements

Code is written in Python (2.7) and requires Theano (0.7).

Using the pre-trained word2vec vectors will also require downloading the binary file from https://code.google.com/p/word2vec/

Data Preprocessing

To process the raw data, run

python process_data.py path

where path points to the word2vec binary file (i.e. GoogleNews-vectors-negative300.bin file). This will create a pickle object called mr.p in the same folder, which contains the dataset in the right format.

Note: This will create the dataset with different fold-assignments than was used in the paper. You should still be getting a CV score of >81% with CNN-nonstatic model, though.

Running the models (CPU)

Example commands:

THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 python conv_net_sentence.py -nonstatic -rand
THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 python conv_net_sentence.py -static -word2vec
THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 python conv_net_sentence.py -nonstatic -word2vec

This will run the CNN-rand, CNN-static, and CNN-nonstatic models respectively in the paper.

Using the GPU

GPU will result in a good 10x to 20x speed-up, so it is highly recommended. To use the GPU, simply change device=cpu to device=gpu (or whichever gpu you are using). For example:

THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python conv_net_sentence.py -nonstatic -word2vec

Example output

CPU output:

epoch: 1, training time: 219.72 secs, train perf: 81.79 %, val perf: 79.26 %
epoch: 2, training time: 219.55 secs, train perf: 82.64 %, val perf: 76.84 %
epoch: 3, training time: 219.54 secs, train perf: 92.06 %, val perf: 80.95 %

GPU output:

epoch: 1, training time: 16.49 secs, train perf: 81.80 %, val perf: 78.32 %
epoch: 2, training time: 16.12 secs, train perf: 82.53 %, val perf: 76.74 %
epoch: 3, training time: 16.16 secs, train perf: 91.87 %, val perf: 81.37 %

Other Implementations

TensorFlow

Denny Britz has an implementation of the model in TensorFlow:

https://github.com/dennybritz/cnn-text-classification-tf

He also wrote a nice tutorial on it, as well as a general tutorial on CNNs for NLP.

Torch

HarvardNLP group has an implementation in Torch.

https://github.com/harvardnlp/sent-conv-torch

Hyperparameters

At the time of my original experiments I did not have access to a GPU so I could not run a lot of different experiments. Hence the paper is missing a lot of things like ablation studies and variance in performance, and some of the conclusions were premature (e.g. regularization does not always seem to help).

Ye Zhang has written a very nice paper doing an extensive analysis of model variants (e.g. filter widths, k-max pooling, word2vec vs Glove, etc.) and their effect on performance.

Owner
Yoon Kim
Yoon Kim
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Saptak Bhoumik 14 May 24, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021