On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

Related tags

Deep LearningSOLT-GNN
Overview

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

We provide the code (in PyTorch) and datasets for our paper "On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks" (SOLT-GNN for short), which is published in WWW-2022.

1. Descriptions

The repository is organised as follows:

  • dataset/: the original data and sampled subgraphs of the five benchmark datasets.
  • main.py: the main entry of tail graph classificaiton for SOLT-GIN.
  • gin.py: base GIN model.
  • PatternMemory.py: the module of pattern memory.
  • utils.py: contains tool functions for loading the data and data split.
  • subgraph_sample.py: contains codes for subgraph sampling.

2. Requirements

  • Python-3.8.5
  • Pytorch-1.8.1
  • Networkx-2.4
  • numpy-1.18.1

3. Running experiments

Experimental environment

Our experimental environment is Ubuntu 20.04.1 LTS (GNU/Linux 5.8.0-55-generic x86_64), and we train our model using NVIDIA GeForce RTX 1080 GPU with CUDA 11.0.

How to run

(1) First run subgraph_sample.py to complete the step of subgraph sampling before running the main.py. Note that, the sampled subgraph data may occupy some storage space.

  • python subgraph_sample.py

(2) Tail graph classification:

  • python main.py --dataset PTC --K 72 --alpha 0.3 --mu1 1.5 --mu2 1.5
  • python main.py --dataset PROTEINS --K 251 --alpha 0.15 --mu1 2 --mu2 2
  • python main.py --dataset DD --K 228 --alpha 0.1 --mu1 0.5 --mu2 0.5
  • python main.py --dataset FRANK --K 922 --alpha 0.1 --mu1 2 --mu2 0
  • python main.py --dataset IMDBBINARY --K 205 --alpha 0.15 --mu1 1 --mu2 1

Note

  • We repeat the experiments for five times and average the results for report (with standard deviation). Note that, for the five runs, we employ seeds {0, 1, 2, 3, 4} for parameters initialization, respectively.
  • The change of experimental environment (including the Requirements) may result in performance fluctuation for both the baselines and our SOLT-GNN. To reproduce the results in the paper, please set the experimental environment as illustrated above as much as possible. The utilized parameter settings are illustrated in the python commands. Note that, for the possible case of SOLT-GNN performing a bit worse which originates from environment change, the readers can further tune the parameters, including $\mu_1$, $\mu_2$, $\alpha$ and $d_m$. In particular, for these four hyper-parameters, we recommend the authors to tune them in {0.1, 0.5, 1, 1.5, 2}, {0.1, 0.5, 1, 1.5, 2}, {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, {16, 32, 64, 128}, respectively. As the performance of SOLT-GIN highly relates to GIN, so the tuning of hyper-parameters for GIN is encouraged. When tuning the hyper-parameters for SOLT-GNN, please first fix the configuration of GIN for efficiency.
  • To run the model on your own datasets, please refer to the following part (4. Input Data Format) for the dataset format.
  • The implementation of SOLT-GNN is based on the official implementation of GIN (https://github.com/weihua916/powerful-gnns).
  • To tune the other hyper-parameters, please refer to main.py for more details.
    • In particular, for the number of head graphs (marked as K in the paper) in each dataset, which decides the division of the heads/tails, the readers can tune K to explore the effect of different head/tail divisions.
    • Parameters $n_n$ and $n_g$ are the number of triplets for node- and subgraph-levels we used in the training, respectively. Performance improvement might be achieved by appropriately increasing the training triplets.

4. Input Data Format

In order to run SOLT-GNN on your own datasets, here we provide the input data format for SOLT-GNN as follows.

Each dataset XXX only contains one file, named as XXX.txt. Note that, in each dataset, we have a number of graphs. In particular, for each XXX.txt,

  • The first line only has one column, which is the number of graphs (marked as N) contained in this dataset; and the following part of this XXX.txt file is the data of each graph, including a total of N graphs.
  • In the data of each graph, the first line has two columns, which denote the number of nodes (marked as n) in this graph and the label of this graph, respectively. Following this line, there are n lines, with the i-th line corresponding to the information of node i in this graph (index i starts from 0). In each of these n lines (n nodes), the first column is the node label, the second column is the number of its neighbors (marked as m), and the following m columns correspond to the indeces (ids) of its neighbors.
    • Therefore, each graph has n+1 lines.

5. Cite

@inproceedings{liu2022onsize,
  title={On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks},
  author={Liu, Zemin and Mao, Qiheng and Liu, Chenghao and Fang, Yuan and Sun, Jianling},
  booktitle={Proceedings of the ACM Web Conference 2022},
  year={2022}
}

6. Contact

If you have any questions on the code and data, please contact Qiheng Mao ([email protected]).

Owner
Zemin Liu
My email address : liuzemin [AT] zju [DOT] edu [DOT] cn, liu [DOT] zemin [AT] hotmail [DOT] com
Zemin Liu
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022