Personalized Federated Learning using Pytorch (pFedMe)

Overview

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020)

This repository implements all experiments in the paper Personalized Federated Learning with Moreau Envelopes.

Authors: Canh T. Dinh, Nguyen H. Tran, Tuan Dung Nguyen

Full paper: https://arxiv.org/pdf/2006.08848.pdf https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf

Paper has been accepted by NeurIPS 2020.

This repository does not only implement pFedMe but also FedAvg, and Per-FedAvg algorithms. (Federated Learning using Pytorch)

Software requirements:

  • numpy, scipy, torch, Pillow, matplotlib.

  • To download the dependencies: pip3 install -r requirements.txt

Dataset: We use 2 datasets: MNIST and Synthetic

  • To generate non-idd MNIST Data:

    • Access data/Mnist and run: "python3 generate_niid_20users.py"
    • We can change the number of user and number of labels for each user using 2 variable NUM_USERS = 20 and NUM_LABELS = 2
  • To generate idd MNIST Data (we do not use iid data in the paper):

    • Access data/Mnist and run: "python3 generate_iid_20users.py"
  • To generate niid Synthetic:

    • Access data/Synthetic and run: "python3 generate_synthetic_05_05.py". Similar to MNIST data, the Synthetic data is configurable with the number of users and the numbers of labels for each user.
  • The datasets also are available to download at: https://drive.google.com/drive/folders/1-Z3FCZYoisqnIoLLxOljMPmP70t2TGwB?usp=sharing

Produce experiments and figures

  • There is a main file "main.py" which allows running all experiments.

Using same parameters

  • To produce the comparison experiments for pFedMe using MNIST dataset: MNIST

    • Strongly Convex Case, run below commands:
      
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.1 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5  --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5  --times 10
      
  • It is noted that each algorithm should be run at least 10 times and then the results are averaged.

  • All the train loss, testing accuracy, and training accuracy will be stored as h5py file in the folder "results". It is noted that we store the data for persionalized model and global of pFedMe in 2 separate files following format: DATASET_pFedMe_p_x_x_xu_xb_x_avg.h5 and DATASET_pFedMe_x_x_xu_xb_x_avg.h5 respectively (pFedMe for global model, pFedMe_p for personalized model of pFedMe, PerAvg_p is for personalized model of PerAvg).

  • In order to plot the figure for convex case, set parameters in file main_plot.py similar to parameters run from previous experiments. It is noted that each experiment with different parameters will have different results, the configuration in the plot function should be modified for each specific case. For example. To plot the comparision in convex case for the above experiments, in the main_plot.py set:

    
      numusers = 5
      num_glob_iters = 800
      dataset = "Mnist"
      local_ep = [20,20,20,20]
      lamda = [15,15,15,15]
      learning_rate = [0.005, 0.005, 0.005, 0.005]
      beta =  [1.0, 1.0, 0.001, 1.0]
      batch_size = [20,20,20,20]
      K = [5,5,5,5]
      personal_learning_rate = [0.1,0.1,0.1,0.1]
      algorithms = [ "pFedMe_p","pFedMe","PerAvg_p","FedAvg"]
      plot_summary_one_figure_mnist_Compare(num_users=numusers, loc_ep1=local_ep, Numb_Glob_Iters=num_glob_iters, lamb=lamda,
                                 learning_rate=learning_rate, beta = beta, algorithms_list=algorithms, batch_size=batch_size, dataset=dataset, k = K, personal_learning_rate = personal_learning_rate)
      
    • NonConvex case:
      
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.09 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
      To plot the figure for non-convex case, we do similar to convex case, also need to change the parameters in main_plot.py.
  • To produce the comparision experiment for pFedMe using Synthetic dataset: SYNTHETIC

    • Strongly Convex Case:

      
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.01 --beta 1 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      
    • NonConvex case:

      
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --personal_learning_rate 0.01 --beta 1 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.005 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      

Fine-tuned Parameters:

To produce results in the table of fine-tune parameter:

  • MNIST:

    • Strongly Convex Case:

      
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.1 --beta 2 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.02 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model mclr --batch_size 20 --learning_rate 0.03 --beta 0.003  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
    • NonConvex Case:

      
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.05 --beta 2 --lamda 30 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.02 --num_global_iters 800 --local_epochs 20 --algorithm FedAvg --numusers 5 --times 10
      python3 main.py --dataset Mnist --model dnn --batch_size 20 --learning_rate 0.02 --beta 0.001  --num_global_iters 800 --local_epochs 20 --algorithm PerAvg --numusers 5 --times 10
      
  • Sythetic:

    • Strongly Convex Case:

      
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 2 --lamda 20 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.02 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model mclr --batch_size 20 --learning_rate 0.02 --beta 0.002  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      
    • NonConvex Case:

      
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 2 --lamda 30 --num_global_iters 600 --local_epochs 20 --algorithm pFedMe --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.03 --num_global_iters 600 --local_epochs 20 --algorithm FedAvg --numusers 10 --times 10
      python3 main.py --dataset Synthetic --model dnn --batch_size 20 --learning_rate 0.01 --beta 0.001  --num_global_iters 600 --local_epochs 20 --algorithm PerAvg --numusers 10 --times 10
      

Effect of hyper-parameters:

For all the figures for effect of hyper-parameters, we use Mnist dataset and fix the learning_rate == 0.005 and personal_learning_rate == 0.09 for all experiments. Other parameters are changed according to the experiments. Only in the experiments for the effects of $\beta$, in case $\beta = 4$, we use learning_rate == 0.003 to stable the algorithm.

CIFAR-10 dataset:

The implementation of Cifar10 has been finished. However, we haven't fine-tuned the parameters for all algorithms on Cifar10. Below is the comment to run cifar10 on pFedMe.


python3 main.py --dataset Cifar10 --model cnn --batch_size 20 --learning_rate 0.01 --personal_learning_rate 0.01 --beta 1 --lamda 15 --num_global_iters 800 --local_epochs 20 --algorithm pFedMe --numusers 5 
Owner
Charlie Dinh
Ph.D. Candidate at the University of Sydney, Australia. Master of Data Science at Grenoble INP, France.
Charlie Dinh
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
wlad 2 Dec 19, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023