3.8% and 18.3% on CIFAR-10 and CIFAR-100

Overview

Wide Residual Networks

This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko and Nikos Komodakis.

Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train.

To tackle these problems, in this work we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts.

For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks. We further show that WRNs achieve incredibly good results (e.g., achieving new state-of-the-art results on CIFAR-10, CIFAR-100, SVHN, COCO and substantial improvements on ImageNet) and train several times faster than pre-activation ResNets.

Update (August 2019): Pretrained ImageNet WRN models are available in torchvision 0.4 and PyTorch Hub, e.g. loading WRN-50-2:

model = torch.hub.load('pytorch/vision', 'wide_resnet50_2', pretrained=True)

Update (November 2016): We updated the paper with ImageNet, COCO and meanstd preprocessing CIFAR results. If you're comparing your method against WRN, please report correct preprocessing numbers because they give substantially different results.

tldr; ImageNet WRN-50-2-bottleneck (ResNet-50 with wider inner bottleneck 3x3 convolution) is significantly faster than ResNet-152 and has better accuracy; on CIFAR meanstd preprocessing (as in fb.resnet.torch) gives better results than ZCA whitening; on COCO wide ResNet with 34 layers outperforms even Inception-v4-based Fast-RCNN model in single model performance.

Test error (%, flip/translation augmentation, meanstd normalization, median of 5 runs) on CIFAR:

Network CIFAR-10 CIFAR-100
pre-ResNet-164 5.46 24.33
pre-ResNet-1001 4.92 22.71
WRN-28-10 4.00 19.25
WRN-28-10-dropout 3.89 18.85

Single-time runs (meanstd normalization):

Dataset network test perf.
CIFAR-10 WRN-40-10-dropout 3.8%
CIFAR-100 WRN-40-10-dropout 18.3%
SVHN WRN-16-8-dropout 1.54%
ImageNet (single crop) WRN-50-2-bottleneck 21.9% top-1, 5.79% top-5
COCO-val5k (single model) WRN-34-2 36 mAP

See http://arxiv.org/abs/1605.07146 for details.

bibtex:

@INPROCEEDINGS{Zagoruyko2016WRN,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {Wide Residual Networks},
    booktitle = {BMVC},
    year = {2016}}

Pretrained models

ImageNet

WRN-50-2-bottleneck (wider bottleneck), see pretrained for details
Download (263MB): https://yadi.sk/d/-8AWymOPyVZns

There are also PyTorch and Tensorflow model definitions with pretrained weights at https://github.com/szagoruyko/functional-zoo/blob/master/wide-resnet-50-2-export.ipynb

COCO

Coming

Installation

The code depends on Torch http://torch.ch. Follow instructions here and run:

luarocks install torchnet
luarocks install optnet
luarocks install iterm

For visualizing training curves we used ipython notebook with pandas and bokeh.

Usage

Dataset support

The code supports loading simple datasets in torch format. We provide the following:

To whiten CIFAR-10 and CIFAR-100 we used the following scripts https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/datasets/make_cifar10_gcn_whitened.py and then converted to torch using https://gist.github.com/szagoruyko/ad2977e4b8dceb64c68ea07f6abf397b and npy to torch converter https://github.com/htwaijry/npy4th.

We are running ImageNet experiments and will update the paper and this repo soon.

Training

We provide several scripts for reproducing results in the paper. Below are several examples.

model=wide-resnet widen_factor=4 depth=40 ./scripts/train_cifar.sh

This will train WRN-40-4 on CIFAR-10 whitened (supposed to be in datasets folder). This network achieves about the same accuracy as ResNet-1001 and trains in 6 hours on a single Titan X. Log is saved to logs/wide-resnet_$RANDOM$RANDOM folder with json entries for each epoch and can be visualized with itorch/ipython later.

For reference we provide logs for this experiment and ipython notebook to visualize the results. After running it you should see these training curves:

viz

Another example:

model=wide-resnet widen_factor=10 depth=28 dropout=0.3 dataset=./datasets/cifar100_whitened.t7 ./scripts/train_cifar.sh

This network achieves 20.0% error on CIFAR-100 in about a day on a single Titan X.

Multi-GPU is supported with nGPU=n parameter.

Other models

Additional models in this repo:

Implementation details

The code evolved from https://github.com/szagoruyko/cifar.torch. To reduce memory usage we use @fmassa's optimize-net, which automatically shares output and gradient tensors between modules. This keeps memory usage below 4 Gb even for our best networks. Also, it can generate network graph plots as the one for WRN-16-2 in the end of this page.

Acknowledgements

We thank startup company VisionLabs and Eugenio Culurciello for giving us access to their clusters, without them ImageNet experiments wouldn't be possible. We also thank Adam Lerer and Sam Gross for helpful discussions. Work supported by EC project FP7-ICT-611145 ROBOSPECT.

CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022