Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Overview

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers

Description:

Model Optimizer in Intel(r) OpenVINO(tm) toolkit supports model division function. User can specify the region in the model to convert by specifying entry point and exit point with --input and --output options respectively.
The expected usage of those options are:

  • Excluding unnecessary layers: Removing non-DL related layers (such as JPEG decode) and layers not required for inferencing (such as accuracy metrics calculation)
  • Load balancing: Divide a model into multiple parts and cascade them to get the final inferencing result. Each individual part can be run on different device or different timing.
  • Access to the intermediate result: Divide a model and get the intermediate feature data to check the model integrity or for the other purposes.
  • Exclude non-supported layers: Convert the model without OpenVINO non-supprted layers. Divide the model and skip non-supported layers to get the IR models. User needs to perform the equivalent processing for the excluded layers to get the correct inferencing result.

This project demonstrates how to divide a DL model, and fill the hole for skipped leyers.
The project includes Python and C++ implementations of naive 2D convolution layer to perform the Conv2D task which was supposed to have done by the skipped layer. This could be a good reference when you need to implement a custom layer function to your project but don't want to develop full-blown OpenVINO custom layers due to some restrictions such as development time.
In this project, we will use a simple CNN classification model trained with MNIST dataset and demonstrate the way to divide the model with skipping a layer (on purpose) and use a simple custom layer to cover the data processing for the skipped layer.

image

Prerequisites:

  • TensorFlow 2.x
  • OpenVINO 2021.4 (2021.x may work)

How to train the model and create a trained model

You can train the model by just kicking the training.py script. training.py will use keras.datasets.mnist as the training and validation dataset and train the model, and then save the trained model in SavedModel format.
training.py also generates weights.npy file that contains the weight and bias data of target_conv_layer layer. This weight and bias data will be used by the special made Conv2D layer.
Since the model we use is tiny, it will take just a couple of minutes to complete.

python3 training.py

How to convert a TF trained model into OpenVINO IR model format

Model Optimizer in OpenVINO converts TF (savedmodel) model into OpenVINO IR model.
Here's a set of script to convert the model for you.

script description
convert-normal.sh Convert entire model and generate single IR model file (no division)
convert-divide.sh Divide the input model and output 2 IR models. All layers are still contained (no skipped layers)
convert-divide-skip.sh Divide the input model and skip 'target_conv_layer'
  • The converted models can be found in ./models folder.

Tip to find the correct node name for Model Optimizer

Model optimizer requires MO internal networkx graph node name to specify --input and --output nodes. You can modify the model optimizer a bit to have it display the list of networkx node names. Add 3 lines on the very bottom of the code snnipet below and run the model optimizer.

mo/utils/class_registration.py

def apply_replacements_list(graph: Graph, replacers_order: list):
    """
    Apply all transformations from replacers_order
    """
    for i, replacer_cls in enumerate(replacers_order):
        apply_transform(
            graph=graph,
            replacer_cls=replacer_cls,
            curr_transform_num=i,
            num_transforms=len(replacers_order))
        # Display name of available nodes after the 'loader' stage
        if 'LoadFinish' in str(replacer_cls):
            for node in graph.nodes():
                print(node)

You'll see something like this. You need to use one of those node names for --input and --output options in MO.

conv2d_input
Func/StatefulPartitionedCall/input/_0
unknown
Func/StatefulPartitionedCall/input/_1
StatefulPartitionedCall/sequential/conv2d/Conv2D/ReadVariableOp
StatefulPartitionedCall/sequential/conv2d/Conv2D
   :   (truncated)   :
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp
StatefulPartitionedCall/sequential/dense_1/BiasAdd
StatefulPartitionedCall/sequential/dense_1/Softmax
StatefulPartitionedCall/Identity
Func/StatefulPartitionedCall/output/_11
Func/StatefulPartitionedCall/output_control_node/_12
Identity
Identity56

How to infer with the models on OpenVINO

Several versions of scripts are available for the inference testing.
Those test programs will do inference 10,000 times with the MNIST validation dataset. Test program displays '.' when inference result is correct and 'X' when it's wrong. Performance numbers are measured from the start of 10,000 inferences to the end of all inferences. So, it is including loop overhead, pre/post processing time and so on.

script description (reference execution time, Core i7-8665U)
inference.py Use simgle, monolithic IR model and run inference 3.3 sec
inference-div.py Take 2 divided IR models and run inference. 2 models will be cascaded. 5.3 sec(*1)
inference-skip-python.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program is including a Python version of Conv2D and perform convolution for 'target_conv_layer'. VERY SLOW. 4338.6 sec
inference-skip-cpp.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program imports a Python module written in C++ which includes a C++ version of Conv2D. Reasonably fast. Conv2D Python extension module is required. Please refer to the following section for details. 10.8 sec

Note 1: This model is quite tiny and light-weight. OpenVINO can run this model in <0.1msec on Core i7-8665U CPU. The inferencing overhead introduced by dividing the model is noticeable but when you use heavy model, this penalty might be negligible.

How to build the Conv2D C++ Python extnsion module

You can build the Conv2D C++ Python extension module by running build.sh or build.bat.
myLayers.so or myLayers.pyd will be generated and copied to the current directory after a successful build.

How to run draw-and-infer demo program

Here's a simple yet bit fun demo application for MNIST CNN. You can draw a number on the screen by mouse or finger-tip and you'll see the real-time inference result. Right-click will clear the screen for another try. Several versions are available.

script description
draw-and-infer.py Use the monolithic IR model
draw-and-infer-div.py Use divided IR models
draw-and-infer-skip-cpp.py Use divided IR models which excluded 'target_conv_layer'. Conv2D Python extension is requird.

draw-and-infer

Tested environment

  • Windows 10 + VS2019 + OpenVINO 2021.4
  • Ubuntu 20.04 + OpenVINO 2021.4
Owner
Yasunori Shimura
Yasunori Shimura
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023