GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

Overview

GEP (GDB Enhanced Prompt)

asciicast

GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility.

Why I need this plug-in?

GDB's original prompt is using hardcoded built-in GNU readline library, we can't add our custom function and key binding easily. The old way to implement them is by patching the GDB's C source code and compiling it again.

But now, you can write your function in Python and use arbitrary key binding easily with GEP without any patching!

And also, GEP has some awesome features already, you can directly use it!

Features

  • Ctrl+R for fzf history reverse search
  • up-arrow for partial string matching in history
  • TAB for auto-completion with floating window
  • fish-like autosuggestions
  • has the ability to build custom key binding and its callback function by modifying geprc.py

How to install it?

Make sure you have GDB 8.0 or higher compiled with Python3.6+ bindings, then:

  1. Install fzf: Installation

  2. Download this plug-in and install it:

git clone https://github.com/lebr0nli/GEP.git && \
cd GEP && \
sh install.sh

Note: This plug-in is using prompt-toolkit 2.0.10 (because IDK why prompt-toolkit 3 is not working with GDB Python API), so the install.sh will download prompt_toolkit==2.0.10 to ~/GEP/. Maybe we can build our prompt toolkit just for this plug-in in the future.

  1. Add source ~/GEP/.gdbinit-gep to the last line of your ~/.gdbinit

You can run:

echo 'source ~/GEP/.gdbinit-gep' >> ~/.gdbinit
  1. Enjoy!

For more configuration

You can modify configuration about history and auto-completion in ~/GEP/.gdbinit-gep.

You can also add your custom key bindings by modifying ~/GEP/geprc.py.

The trade-offs

Since GDB doesn't have a good Python API to fully control and emulate its prompt, this plug-in has some side effects.

However, the side effects are avoidable, here are the guides to avoid them:

gdb.event.before_prompt

The GDB Python API event: gdb.event.before_prompt may be called only once.

So if you are using a GDB plug-in that is listening on this event, this plug-in will cause some bugs.

As far as I know, pwndbg and gef won't be bothered by this side effect now.

To avoid this, you can change the callback function by adding them to gdb.prompt_hook, gdb.prompt_hook has almost the same effects with event.before_prompt, but gdb.prompt_hook can be directed invoke, so this plug-in still can emulate that callback for you!

dont-repeat

When your input is empty and directly press ENTER, GDB will execute the previous command from history if that command doesn't have the property: dont-repeat.

As far as I know, there is no GDB API for checking a command's property.

So, I added some commonly used commands (for original GDB API and GEF) which have that property in a list to avoid repeatedly executing them.

If you have some user-defined function that has dont-repeat property, add your command into the list manually, too.

Note: The list is in .gdbinit-gep.py and the variable name is DONT_REPEAT.

If you found some commands which should or shouldn't be added in that list, let me know on the issue page, thanks!

Bugs, suggestions, and ideas

If you found any bug, or you have any suggestions/ideas about this plug-in, feel free to leave your feedback on the GitHub issue page or send me a pull request!

Thanks!

Owner
Alan Li
Stay hungry, stay foolish. Keep hacking!
Alan Li
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022