SMPLpix: Neural Avatars from 3D Human Models

Related tags

Deep Learningsmplpix
Overview
subject0_validation_poses.mp4

Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video.

SMPLpix: Neural Avatars from 3D Human Models

SMPLpix neural rendering framework combines deformable 3D models such as SMPL-X with the power of image-to-image translation frameworks (aka pix2pix models).

Please check our WACV 2021 paper or a 5-minute explanatory video for more details on the framework.

Important note: this repository is a re-implementation of the original framework, made by the same author after the end of internship. It does not contain the original Amazon multi-subject, multi-view training data and code, and uses full mesh rasterizations as inputs rather than point projections (as described here).

Demo

Description Link
Process a video into a SMPLpix dataset Open In Colab
Train SMPLpix Open In Colab

Prepare the data

demo_openpose_simplifyx

We provide the Colab notebook for preparing SMPLpix training dataset. This will allow you to create your own neural avatar given monocular video of a human moving in front of the camera.

Run demo training

We provide some preprocessed data which allows you to run and test the training pipeline right away:

git clone https://github.com/sergeyprokudin/smplpix
cd smplpix
python setup.py install
python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0'

Train on your own data

You can train SMPLpix on your own data by specifying the path to the root directory with data:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_dir='/path/to/data'

The directory should contain train, validation and test folders, each of which should contain input and output folders. Check the structure of the demo dataset for reference.

You can also specify various parameters of training via command line. E.g., to reproduce the results of the demo video:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0' \
                        --downsample_factor=2 \
                        --n_epochs=500 \
                        --sched_patience=2 \
                        --batch_size=4 \
                        --n_unet_blocks=5 \
                        --n_input_channels=3 \
                        --n_output_channels=3 \
                        --eval_every_nth_epoch=10

Check the args.py for the full list of parameters.

More examples

Animating with novel poses

subject0_test_poses.mp4

Left: poses from the test video sequence, right: SMPLpix renders.

Rendering faces

deca_smplpix_test_renders.mp4

Left: FLAME face model inferred with DECA, middle: ground truth test video, right: SMPLpix render.

Thanks to Maria Paola Forte for providing the sequence.

Few-shot artistic neural style transfer

kabarov_animations.mp4

Left: rendered AMASS motion sequence, right: generated SMPLpix animations. See the explanatory video for details.

Credits to Alexander Kabarov for providing the training sketches.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{prokudin2021smplpix,
  title={SMPLpix: Neural Avatars from 3D Human Models},
  author={Prokudin, Sergey and Black, Michael J and Romero, Javier},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1810--1819},
  year={2021}
}

License

See the LICENSE file.

Owner
Sergey Prokudin
Postdoctoral researcher in computer vision and machine learning
Sergey Prokudin
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022