This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Overview

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

This is the repository for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement". The repository is structured as the following:

  • PyPruning: This repository contains the implementations for all pruning algorithms and can be installed as a regular python package and used in other projects. For more information have a look at the Readme file in PyPruning/Readme.md and its documentation in PyPruning/docs.
  • experiment_runner: This is a simple package / script which can be used to run multiple experiments in parallel on the same machine or distributed across many different machines. It can also be installed as a regular python package and used for other projects. For more information have a look at the Readme file in experiment_runner/Readme.md.
  • {adult, bank, connect, ..., wine-quality}: Each folder contains an script init.sh which downloads the necessary files and performs pre-processing if necessary (e.g. extract archives etc.).
  • init_all.sh: Iterates over all datasets and calls the respective init.sh files. Depending on your internet connection this may take some time
  • environment.yml: Anaconda environment file which contains all dependencies. For more details see below
  • LeafRefinement.py: This is the implementation of the LeafRefinement method. We initially implemented a more complex method which uses Proximal Gradient Descent to simultaneously learn the weights and refine leaf nodes. During our experiments we discovered that leaf-refinement in iteself was enough and much simpler. We kept our old code, but implemented the LeafRefinement.py class for easier usage.
  • run.py: The script which executes the experiments. For more details see the examples below.
  • plot_results.py: The script is used explore and display results. It also creates the plots for the paper.

Getting everything ready

This git repository contains two submodules PyPruning and experiment_runner which need to be cloned first.

git clone --recurse-submodules [email protected]:sbuschjaeger/leaf-refinement-experiments.git

After the code has been obtained you need to install all dependencies. If you use Anaconda you can simply call

conda env create -f environment.yml

to prepare and activate the environment LR. After that you can install the python packages PyPruning and experiment_runner via pip:

pip install -e file:PyPruning
pip install -e file:experiment_runner

and finally activate the environment with

conda activate LR

Last you will need to get some data. If you are interested in a specific dataset you can use the accompanying init.sh script via

cd `${Dataset}`
./init.sh

or if you want to download all datasets use

./init_all.sh

Depending on your internet connection this may take some time.

Running experiments

If everything worked as expected you should now be able to run the run.py script to prune some ensembles. This script has a decent amount of parameters. See further below for an minimal working example.

  • n_jobs: Number of jobs / threads used for multiprocessing
  • base: Base learner used for experiments. Can be {RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier, HeterogenousForest}. Can be a list of arguments for multiple experiments.
  • nl: Maximum number of leaf nodes (corresponds to scikit-learns max_leaf_nodes parameter)
  • dataset: Dataset used for experiment. Can be a list of arguments for multiple experiments.
  • n_estimators: Number of estimators trained for the base learner.
  • n_prune: Size of the pruned ensemble. Can be a list of arguments for multiple experiments.
  • xval: Number of cross validation runs (default is 5)
  • use_prune: If set then the script uses a train / prune / test split. If not set then the training data is also used for pruning.
  • timeout: Maximum number of seconds per run. If the runtime exceeds the provided value, stop execution (default is 5400 seconds)

Note that all base ensembles for all cross validation splits of a dataset are trained before any of the pruning algorithms are used. If you want to evaluate many datasets / hyperparameter configuration in one run this requires a lot of memory.

To train and prune forests on the magic dataset you can for example do

./run.py --dataset adult -n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

The results are stored in ${Dataset}/results/${base}/${use_prune}/${date}/results.jsonl where ${Dataset} is the dataset (e.g. magic) and ${date} is the current time and date.

In order to re-produce the experiments form the paper you can call:

./run.py --dataset adult anura bank chess connect eeg elec postures japanese-vowels magic mozilla mnist nomao avila ida2016 satimage --n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

Important: This call uses 128 threads and requires a decent (something in the range of 64GB) amount of memory to work.

Exploring the results

After you run the experiments you can view the results with the plot_results.py script. We recommend to use an interactive Python environment for that such as Jupyter or VSCode with the ability to execute cells, but you should also be able to run this script as-is. This script is fairly well-commented, so please have a look at it for more detailed comments.

Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022