Package for extracting emotions from social media text. Tailored for financial data.

Overview

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts

EmTract is a tool that extracts emotions from social media text. It incorporates key aspects of social media data (e.g., non-standard phrases, emojis and emoticons), and uses cutting edge natural language processing (NLP) techniques to learn latent representations, such as word order, word usage, and local context, to predict the emotions.

Details on the model and text processing are in the appendix of EmTract: Investor Emotions and Market Behavior.

User Guide

Installation

Before being able to use the package python3 must be installed. We also recommend using a virtual environment so that the tool runs with the same dependencies with which it was developed. Instruction on how to set up a virtual environment can be found here.

Once basic requirements are setup, follow these instructions:

  1. Clone the repository: git clone https://github.com/dvamossy/EmTract.git
  2. Navigate into repository: cd EmTract
  3. (Optional) Create and activate virtual environment:
    python3 -m venv venv
    source venv/bin/activate
    
  4. Run ./install.sh. This will install python requirements and also download our model files

Usage

Our package should be run with the following command:

python3 -m emtract.inference [args]

Where args are the following:

  • --model_type: can be twitter or stocktwits. Default is stocktwits
  • --interactive: Run in interactive mode
  • --input_file/-i: input to use for predictions (only for non interactive mode)
  • --output_file/-o: output location for predictions(only for non interactive mode)

Output

For each input (i.e., text), EmTract outputs probabilities (they sum to 1!) corresponding to seven emotional states: neutral, happy, sad, anger, disgust, surprise, fear. It also labels the text by computing the argmax of the probabilities.

Modes

Our tool can be run in 2 execution modes.

Interactive mode allows the user to input a tweet and evaluate it in real time. This is great for exploratory analysis.

python3 -m emtract.inference --interactive

The other mode is intended for automating predictions. Here an input file must be specified that will be used as the prediction input. This file must be a csv or text file with 1 column. This column should have the messages/text to predict with.

python3 -m emtract.inference -i tweets_example.csv -o predictions.csv

Model Types

Our models leverage GloVe Embeddings with Bidirectional GRU architecture.

We trained our emotion models with 2 different data sources. One from Twitter, and another from StockTwits. The Twitter training data comes from here; it is available at data/twitter_emotion.csv. The StockTwits training data is explained in the paper.

One of the key concerns using emotion packages is that it is unknown how well they transfer to financial text data. We alleviate this concern by hand-tagging 10,000 StockTwits messages. These are available at data/hand_tagged_sample.parquet.snappy; they were not included during training any of our models. We use this for testing model performance, and alternative emotion packages (notebooks/Alternative Packages.ipynb).

We found our StockTwits model to perform best on the hand-tagged sample, and therefore it is used as the default for predictions.

Alternative Models

We also have an implementation of DistilBERT in notebooks/Alternative Models.ipynb on the Twitter data; which can be easily extended to any other state-of-the-art models. We find marginal performance gains on the hand-tagged sample, which comes at the cost of far slower inference.

Citation

If you use EmTract in your research, please cite us as follows:

Domonkos Vamossy and Rolf Skog. EmTract: Investor Emotions and Market Behavior https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3975884, 2021.

Contributing and Feedback

This project welcomes contributions and suggestions.

Our goal is to provide a unified framework for extracting emotions from financial social media text. Particularly useful for research on emotions in financial contexts would be labeling financial social media text. We plan to upload sample text upon request.

Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022