Meta graph convolutional neural network-assisted resilient swarm communications

Overview

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

This repository contains the source codes of

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

Zhiyu Mou, Feifei Gao, Jun Liu, and Qihui Wu

Fei-Lab

Problem Descriptions

In this paper, we study the self-healing of communication connectivity (SCC) problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external destructions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

Display of Main Results Demo

One-off UEDs

randomly destruct 150 UAVs                             randomly destruct 100 UAVs

150 100

General UEDs

general UEDs with global information           general UEDs with monitoring mechanism

general_global_info general

Note: these are gifs. It may take a few seconds to display. You can refresh the page if they cannot display normally. Or you can view them in ./video.

Environment Requirements

pytorch==1.6.0
torchvision==0.7.0
numpy==1.18.5
matplotlib==3.2.2
pandas==1.0.5
seaborn==0.10.1
cuda supports and GPU acceleration

Note: other versions of the required packages may also work.

The machine we use

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
GPU: NVIDIA GeForce RTX 3090

Necessary Supplementary Downloads

As some of the necessary configuration files, including .xlsx and .npy files can not be uploaded to the github, we upload these files to the clouds. Anyone trying to run these codes need to download the necessary files.

Download initial UAV positions (necessary)

To make the codes reproducible, you need to download the initial positions of UAVs we used in the experiment from https://cloud.tsinghua.edu.cn/f/c18807be55634378b30f/ or https://drive.google.com/file/d/1q1J-F2OAY_VDaNd1DWCfy_N2loN7o1XV/view?usp=sharing. Upzip the download files to ./Configurations/.

Download Trained Meta Parameters (alternative, but if using meta learning without training again, then necessary)

Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ and https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing. You need to download the file from either two links and unzip them to ./Meta_Learning_Results/meta_parameters/if you want to use the trained meta parameters. Otherwise, you need to train the meta parameters again (directly run Meta-learning_all.py)

Download Meta Learning Loss Functions Pictures (alternative)

The loss function pictures of meta learning are available on https://cloud.tsinghua.edu.cn/f/fc0d84f2c6374e29bcbe/ and https://drive.google.com/file/d/1cdceleZWyXcD1GxOPCYlLsRVTwNRWPBy/view?usp=sharing. You can store them in ./Meta_Learning_Results/meta_loss_pic/

Quick Start

Simulate SCC under one-off UEDs

directly run ./Experiment_One_off_UED.py

python Experiment_One_off_UED.py

Simulate meta learning process

directly run ./Meta-learning_all.py

python Meta-learning_all.py

Simulate SCC under general UEDs

directly run ./Experiment_General_UED.py

python Experiment_General_UED.py

File and Directory Explanations

  • ./Configurations/

the initial positions of 200 UAVs

  • ./Drawing/

the drawing functions

  • ./Experiment_Fig/

the experiment figures and the drawing source codes

  • ./Main_algorithm_GCN/

the proposed algorithms in the paper

  • ./Main_algorithm_GCN/CR_MGC.py

the CR-MGC algorithm (Algorithm 2 in the paper)

  • ./Main_algorithm_GCN/GCO.py

the GCO algorithm

  • ./Main_algorithm_GCN/Smallest_d_algorithm.py

algorithm of finding the smallest distance to make the RUAV graph a CCN (Algorithm 1 in the paper)

  • ./Meta_Learning_Results/

the results of meta learning

  • ./Meta_Learning_Results/meta_loss_pic

the loss function pictures of 199 mGCNs

  • ./Meta_Learning_Results/meta_parameters

the meta parameters (Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ or https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing)

  • ./Traditional_Algorithm/

the implementations of traditional algorithms

  • ./video/

the gif files of one-off UEDs

  • ./Configurations.py

the simulation parameters

  • ./Environment.py

the Environment generating UEDs

  • ./Experiment_General_UED.py/

the simulation under general UEDs

  • ./Experiment_One_off_UED.py/

the simulation under one-off UEDs

  • ./Experiment_One_off_UED_draw_Fig_12_d.py/

draw the Fig. 12(d) in the simulation under one-off UEDs

  • ./Meta-learning_all.py/

the meta learning

  • ./Swarm.py/

the integration of algorithms under one-off UEDs

  • ./Swarm_general.py/

the integration of algorithms under general UEDs

  • ./Utils.py/

the utility functions

Note that some unnecessary drawing codes used in the paper are not uploaded to this responsitory.

TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022