Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Overview

Realistic Full-Body Anonymization with Surface-Guided GANs

This is the official source code for the paper "Realistic Full-Body Anonymization with Surface-Guided GANs".

[Arixv Paper] [Appendix]

Surface-guided GANs is an automatic full-body anonymization technique based on Generative Adversarial Networks.

The key idea of surface-guided GANs is to guide the generative model with dense pixel-to-surface information (based on continuous surface embeddings). This yields highly realistic anonymization result and allows for diverse anonymization.

Requirements

  • Pytorch >= 1.9
  • Torchvision >= 0.11
  • Python >= 3.8
  • CUDA capable device for training. Training was done with 1-4 32GB V100 GPUs.

Installation

We recommend to setup and install pytorch with anaconda following the pytorch installation instructions.

  1. Clone repository: git clone https://github.com/hukkelas/full_body_anonymization/.
  2. Install using setup.py:
pip install -e .

Test the model

The file anonymize.py can anonymize image paths, directories and videos. python anonymize.py --help prints the different options.

To anonymize, visualize and save an output image, you can write:

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save

The truncation value decides the "creativity" of the generator, which you can specify in the range (0, 1). Setting -t 1 will generate diverse anonymization between individuals in the image. We recommend to set it to t=0.5 to tradeoff between quality and diversity.

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save -t 1

Pre-trained models

Current release includes a pre-trained model for ConfigE from the main paper. More pre-trained models will be released later.

Train the model

Instructions to train and reproduce results from the paper will be released by January 14th 2022.

License

All code, except the stated below, is released under MIT License.

Code under has are provided with other licenses:

Citation

If you use this code for your research, please cite:

@misc{hukkelås2022realistic,
      title={Realistic Full-Body Anonymization with Surface-Guided GANs}, 
      author={Håkon Hukkelås and Morten Smebye and Rudolf Mester and Frank Lindseth},
      year={2022},
      eprint={2201.02193},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Håkon Hukkelås
Interested in generative models, autonomous vehicles and other deep learning areas.
Håkon Hukkelås
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021